鉅大LARGE | 點擊量:1058次 | 2019年10月22日
技術(shù):5.3V電池首次實現(xiàn)穩(wěn)定循環(huán)
圖1.合成的LiCoMnO4的XRD圖譜以及精修圖譜。3.2LiCoMnO4高壓正極的晶體結(jié)構(gòu)XRD圖譜表明LiCoMnO4為立方Fd3m尖晶石結(jié)構(gòu)。鋰離子可以在其三維通道中快速遷移。較強的(220)峰表明有一些過渡金屬元素占據(jù)了四面體8a位置。同時,其中(001)和(020)峰表明產(chǎn)物中有Li2MnO3相的存在,經(jīng)過精修可以發(fā)現(xiàn)其大約占7%。HRTEM以及HR-HAADF-STEM也進一步表明了LiCoMnO4的尖晶石結(jié)構(gòu),同時在HAADF-STEM圖中也發(fā)現(xiàn)了Li2MnO3相的存在。5.3V電池首次實現(xiàn)穩(wěn)定循環(huán)
圖2.LiCoMnO4的HRTEM以及HR-HAADF-STEM圖。3.3LiCoMnO4的電化學性能及循環(huán)過程中的結(jié)構(gòu)變化圖3A顯示,該材料在5.0-5.3V以及4.7-4.9V有兩個放電平臺,其放電比容量達到了152mAh/g,其超出理論容量的部分來源于Li2MnO3。這使得該材料具有720Wh/kg的高能量密度。XANES圖譜表明,在充放電過程中,只有Co經(jīng)歷了Co3+與Co4+的價態(tài)變化,Mn元素并沒有價態(tài)變化,這表明材料的容量全部來源于Co價態(tài)變化。FTEXAFS圖譜也進一步證實了材料優(yōu)異的可逆性。5.3V電池首次實現(xiàn)穩(wěn)定循環(huán)
圖3.(A)LiCoMnO4充放電曲線以及循環(huán)伏安圖,電流密度為0.1A/g;(B)LiCoMnO4能量密度與其他高電壓材料對比圖;(C)首圈充放電曲線圖(電流密度為0.02A/g),在不同區(qū)間(a-g)測試非原位XANES譜圖;(D)Co的XANES圖譜;(E)Mn的XANES圖譜;(F)Co的EXAFS圖譜;(G)Mn的EXAFS圖譜。5.3V電池首次實現(xiàn)穩(wěn)定循環(huán)
圖4.LiCoMnO4原位XRD圖譜。從圖4可以明顯看到,伴隨著鋰離子脫出嵌入,所有的峰僅僅經(jīng)歷偏移,并沒有經(jīng)歷相的消失或者出現(xiàn)新的相。這證明了LiCoMnO4材料經(jīng)歷的是一個固溶體反應(yīng)機理,這與傳統(tǒng)尖晶石材料LiMn2O4以及LiNi0.5Mn1.5O4是不一致的。這可以從不同過渡金屬元素發(fā)生價態(tài)變化引起的體積大小變化來解釋:在LiMn2O4中,Mn3+(0.645?)到Mn4+(0.53?)經(jīng)歷體積變化0.115?;在LiNi0.5Mn1.5O4中,Ni3+(0.56?)到Ni4+(0.48?)經(jīng)歷體積變化0.08?;而在LiCoMnO4中,Co3+(0.545?)到Co4+(0.53?)僅僅經(jīng)歷體積變化0.015?。如此小的體積變化使其更容易發(fā)生固溶體反應(yīng)機理。
圖5.(A)Li金屬沉積充放電曲線,電流密度為0.5mA/cm2;(B)Li金屬沉積庫倫效率,電流密度為0.5mA/cm2;(C)Li//LiCoMnO4電池在不同電解液中循環(huán)性能比較(1MLiPF6+0.02MLiDFOBinFEC/FDEC/HFE或者1MLiPF6inFEC/DMC),電流密度為0.1A/g;(D)Li//LiCoMnO4電池循環(huán)性能,電流密度為1A/g;(E)原始LiCoMnO4TEM圖;(F)在1MLiPF6+0.02MLiDFOBinFEC/FDEC/HFE電解液中100圈循環(huán)后LiCoMnO4TEM圖;(G)在1MLiPF6inFEC/DMC電解液中100圈循環(huán)后LiCoMnO4TEM圖。鋰金屬在該電解液體系中也表現(xiàn)出了優(yōu)異的沉積析出庫倫效率(99%)以及穩(wěn)定性(圖5A和B)這主要是因為生成了穩(wěn)定的以LiF為主的SEI。在0.1A/g的電流密度下,100圈充放循環(huán)后Li//LiCoMnO4電池可以維持90%的容量,而且?guī)靷愋手鸩教嵘?9%以上,這遠遠高于在FEC/DMC作為溶劑的普通電解液體系中的性能(庫倫效率始終低于85%)。這表明FEC/DMC作為溶劑的電解液無法形成穩(wěn)定的CEI,從而阻止電解液進一步分解。從TEM圖中也可以看到,在FEC/DMC電解液中循環(huán)100圈后的材料表面生成的CEI厚度達到10nm以上,而在本文設(shè)計的電解液體系中循環(huán)后其厚度僅為4nm。因此這也保證了Li//LiCoMnO4電池在1A/g的電流密度下穩(wěn)定循環(huán)超過1000圈,并且保持容量80%。5.3V電池首次實現(xiàn)穩(wěn)定循環(huán)
圖6.(A)石墨充放電曲線,電流密度為0.1A/g;(B)在1C倍率下,石墨//LiCoMnO4電池充放電曲線;(C)石墨循環(huán)性能,電流密度為0.1A/g;(D)石墨//LiCoMnO4電池循環(huán)性能,倍率為1C。該電解液體系也可以使石墨電極具有較好的循環(huán)穩(wěn)定性,庫倫效率可以達到99.9%以上。這主要是因為生成了穩(wěn)定的以LiF為主的SEI.因此石墨//LiCoMnO4電池也表現(xiàn)出了優(yōu)異的循環(huán)穩(wěn)定性,其在1C倍率下循環(huán)100圈以后可以維持容量90%以上。