鉅大LARGE | 點(diǎn)擊量:1023次 | 2020年03月29日
揭秘:緊湊電機(jī)控制系統(tǒng)中,柵極驅(qū)動(dòng)器怎么設(shè)計(jì)呢?
由鋰離子供電的高功率密度、高能效、三相無刷直流(BLDC)電機(jī)可用于開發(fā)無線電動(dòng)工具、真空吸塵器和電動(dòng)自行車。然而,為了給更緊湊的機(jī)電產(chǎn)品節(jié)省出空間,設(shè)計(jì)人員面臨進(jìn)一步縮小電機(jī)控制電子器件的壓力。
由鋰離子供電的高功率密度、高能效、三相無刷直流(BLDC)電機(jī)可用于開發(fā)無線電動(dòng)工具、真空吸塵器和電動(dòng)自行車。然而,為了給更緊湊的機(jī)電產(chǎn)品節(jié)省出空間,設(shè)計(jì)人員面臨進(jìn)一步縮小電機(jī)控制電子器件的壓力。
這項(xiàng)任務(wù)并不簡單。除了將驅(qū)動(dòng)元件壓縮到狹小空間這個(gè)顯著的難題外,還有因所有器件靠的更近而造成的熱管理問題,當(dāng)然還有電磁干擾(EMI)問題。
電機(jī)控制電路設(shè)計(jì)人員可以采用新一代高度集成的柵極驅(qū)動(dòng)器來實(shí)現(xiàn)更纖薄的設(shè)計(jì)。它是電機(jī)控制系統(tǒng)最關(guān)鍵的元件。
本文將先探討B(tài)LDC電機(jī)的運(yùn)行,然后再介紹合適的柵極驅(qū)動(dòng)器以及如何使用它們來克服緊湊電機(jī)控制系統(tǒng)所面臨的設(shè)計(jì)挑戰(zhàn)。
打造更好的電機(jī)
由于在商業(yè)上面臨著能效和節(jié)省空間的雙重壓力,電機(jī)設(shè)計(jì)得到了迅猛的發(fā)展。數(shù)控BLDC電機(jī)代表了這一發(fā)展的一個(gè)分支。這種電機(jī)的普及要?dú)w功于電子換向技術(shù)的應(yīng)用。在該技術(shù)的幫助下,BLDC電機(jī)的效率要遠(yuǎn)高于傳統(tǒng)(有刷換向)直流電機(jī)。如果兩種電機(jī)以相同速度和負(fù)載運(yùn)行,BLDC電機(jī)的效率會(huì)比傳統(tǒng)電機(jī)高20%-30%。
這種改進(jìn)使得BLDC電機(jī)能夠在給定功率輸出條件下變得更小、更輕、更安靜。此外,BLDC電機(jī)還擁有其他多種優(yōu)勢(shì),包括更好的速度比扭矩特性、更快的動(dòng)態(tài)響應(yīng)、無噪聲運(yùn)行以及更高的速度范圍。與此同時(shí),工程師們也在推動(dòng)設(shè)計(jì)向著更高電壓和更高頻率發(fā)展,因?yàn)檫@可讓緊湊型電機(jī)完成與大型傳統(tǒng)電機(jī)同樣的功能。
BLDC電機(jī)成功的關(guān)鍵在于其電子開關(guān)模式電源以及電機(jī)控制電路,這種電路可以產(chǎn)生一個(gè)三相輸入,進(jìn)而產(chǎn)生能夠拉動(dòng)電機(jī)轉(zhuǎn)子轉(zhuǎn)動(dòng)的旋轉(zhuǎn)磁場(chǎng)。由于磁場(chǎng)和轉(zhuǎn)子以相同頻率旋轉(zhuǎn),因此這種電機(jī)被歸類為同步電機(jī)?;魻栃?yīng)傳感器可傳達(dá)定子和轉(zhuǎn)子的相對(duì)位置,確保了控制器能夠在適當(dāng)時(shí)刻切換磁場(chǎng)。此外,它還采用了無傳感器技術(shù),通過監(jiān)控反電動(dòng)勢(shì)(EMF)來確定定子和轉(zhuǎn)子的位置。
在三相BLDC電機(jī)中,依序施加電流的最常見配置是以橋式結(jié)構(gòu)排列三對(duì)功率MOSFET。每對(duì)功率MOSFET均充當(dāng)逆變器,用于將來自電源的DC電壓轉(zhuǎn)換為驅(qū)動(dòng)電機(jī)繞組所需的AC電壓(圖1)。在高壓應(yīng)用中,通常使用絕緣柵雙極晶體管(IGBT)代替MOSFET。
圖1:數(shù)控三相BLDC電機(jī)通常使用三對(duì)MOSFET進(jìn)行控制,一對(duì)MOSFET為一個(gè)電機(jī)繞組提供AC電壓。(圖片來源:TexasInstruments)
晶體管對(duì)包括低壓側(cè)器件(源極接地)和高壓側(cè)器件(源極在接地和高壓電源軌之間浮動(dòng))。
在典型布局中,使用脈寬調(diào)制(PWM)控制MOSFET柵極,可以有效地將輸入DC電壓轉(zhuǎn)換為調(diào)制驅(qū)動(dòng)電壓。其中應(yīng)使用至少比預(yù)期最大電機(jī)轉(zhuǎn)速高一個(gè)數(shù)量級(jí)的PWM頻率。一對(duì)MOSFET可以控制一個(gè)電機(jī)相位的磁場(chǎng)。
電機(jī)控制系統(tǒng)一個(gè)完整的電機(jī)控制系統(tǒng)包括電源、主機(jī)微控制器、柵極驅(qū)動(dòng)器以及采用半橋拓?fù)浣Y(jié)構(gòu)的MOSFET(圖2)。微控制器用于設(shè)置PWM占空比并負(fù)責(zé)開環(huán)控制。在低壓設(shè)計(jì)中,柵極驅(qū)動(dòng)器和MOSFET橋有時(shí)會(huì)集成在一個(gè)單元中。然而,對(duì)于高功率單元,為方便熱管理,柵極驅(qū)動(dòng)器和MOSFET橋會(huì)分開布置,這樣可以針對(duì)柵極驅(qū)動(dòng)器和橋采用不同的工藝技術(shù)并最大限度地降低EMI。
圖2:基于TIMSP430微控制器的BLDC電機(jī)控制示意圖。(圖片來源:TexasInstruments)
MOSFET橋可由分立器件或集成芯片組成。將低壓側(cè)和高壓側(cè)MOSFET集成到同一封裝的關(guān)鍵優(yōu)勢(shì)是,即使兩個(gè)MOSFET存在不同的功率耗散,集成后也可以使上下MOSFET之間實(shí)現(xiàn)自然熱平衡。無論是集成式還是分立式,每對(duì)晶體管都需要獨(dú)立的柵極驅(qū)動(dòng)器來控制開關(guān)時(shí)序和驅(qū)動(dòng)電流。
此外,可以使用分立元件來設(shè)計(jì)柵極驅(qū)動(dòng)器電路。這種方法的優(yōu)勢(shì)在于,工程師可以根據(jù)MOSFET特征精確調(diào)整柵極驅(qū)動(dòng)器并對(duì)性能進(jìn)行優(yōu)化。不過,這種方法也存在缺點(diǎn),它需要高水平的電機(jī)設(shè)計(jì)經(jīng)驗(yàn)以及容納分立解決方案所需的空間。
模塊化電機(jī)控制解決方案提供了另一種選擇,市場(chǎng)上有各種各樣的集成式柵極驅(qū)動(dòng)器。較好的模塊化柵極驅(qū)動(dòng)解決方案包括:
高度集成解決方案,可最大限度地減少器件所需的空間
高驅(qū)動(dòng)電流解決方案,可降低開關(guān)損耗并提高效率
高柵極驅(qū)動(dòng)電壓解決方案,可確保以最小內(nèi)阻(RDS(ON))導(dǎo)通MOSFET
高水平過流、過壓和過熱保護(hù)解決方案,可確保系統(tǒng)能夠在最壞情況下可靠運(yùn)行
像TexasInstruments的DRV8323x三相柵極驅(qū)動(dòng)器系列之類的器件不僅能滿足高能效BLDC電機(jī)的要求,還能減少系統(tǒng)的元件數(shù)量,同時(shí)降低成本和復(fù)雜性。
DRV8323x系列有三種型號(hào)。每種型號(hào)都集成了三個(gè)獨(dú)立的柵極驅(qū)動(dòng)器,能夠驅(qū)動(dòng)高壓側(cè)和低壓側(cè)的MOSFET對(duì)。柵極驅(qū)動(dòng)器包含一個(gè)電荷泵,可為高壓側(cè)晶體管產(chǎn)生高柵極電壓(最高支持100%占空比),還包含一個(gè)線性穩(wěn)壓器,可為低壓側(cè)晶體管供電。
TI柵極驅(qū)動(dòng)器包括感應(yīng)放大器。如果需要,可以對(duì)放大器進(jìn)行配置,以放大通過整個(gè)低壓側(cè)MOSFET的電壓。這些器件可拉出最高1A和灌入2A的峰值柵極驅(qū)動(dòng)電流,其采用單電源供電并具有6V至60V的超寬輸入電源范圍。
例如,DRV8323R版驅(qū)動(dòng)器集成了三個(gè)雙向電流檢測(cè)放大器,利用低壓側(cè)分流電阻器通過每個(gè)MOSFET橋來監(jiān)控電流水平。電流檢測(cè)放大器的增益設(shè)置可通過SPI或硬件接口進(jìn)行調(diào)整。微控制器連接至DRV8323R的EN_GATE,因此可以啟用或禁用柵極驅(qū)動(dòng)輸出。
此外,DRV8323R驅(qū)動(dòng)器還集成了一個(gè)600mA的降壓穩(wěn)壓器,可為外部控制器供電。該穩(wěn)壓器既可以使用柵極驅(qū)動(dòng)器電源,也可以使用單獨(dú)電源(圖3)。
圖3:高集成度柵極驅(qū)動(dòng)器(如TI的DRV8323R)可以減少系統(tǒng)元件數(shù)量,降低成本和復(fù)雜性,同時(shí)節(jié)省空間。(圖片來源:TexasInstruments)
這些柵極驅(qū)動(dòng)器具有多項(xiàng)保護(hù)功能,如電源欠壓鎖定、充電泵欠壓鎖定、過流監(jiān)控、柵極驅(qū)動(dòng)器短路檢測(cè)以及過熱關(guān)斷等。
每個(gè)DRV832x都封裝在一個(gè)尺寸僅為5x5-7x7mm(取決于選件)的芯片中。這些產(chǎn)品可以節(jié)省24個(gè)以上分立元件所需的空間。
采用集成式柵極驅(qū)動(dòng)器進(jìn)行設(shè)計(jì)為使設(shè)計(jì)人員快速開始設(shè)計(jì),TI提供了參考設(shè)計(jì)TIDA-01485。TIDA-01485是一個(gè)效率達(dá)99%、功率級(jí)為1千瓦(kW)的參考設(shè)計(jì),適用于各種應(yīng)用的三相36伏BLDC電機(jī),例如以10芯鋰離子電池供電的電動(dòng)工具等。
該參考設(shè)計(jì)通過構(gòu)建此功率級(jí)最小的電機(jī)控制電路之一,展示了如何使用高度集成的柵極驅(qū)動(dòng)器(如DRV8323R)在電機(jī)控制設(shè)計(jì)中節(jié)省空間。該參考設(shè)計(jì)實(shí)現(xiàn)了基于傳感器的控制。
該參考設(shè)計(jì)的主要元件包括MSP430F5132微控制器、DRV8323R柵極驅(qū)動(dòng)器和三個(gè)CSD8859960V半橋MOSFET電源模塊(圖4)。
圖4:TIDA-01485是一個(gè)效率達(dá)99%、功率級(jí)為1kW的參考設(shè)計(jì),適用于可由10芯鋰離子電池供電的三相36VBLDC電機(jī)。(圖片來源:TexasInstruments)
雖然柵極驅(qū)動(dòng)器是一個(gè)高度集成的模塊化解決方案,能夠消除分立設(shè)計(jì)所帶來的諸多復(fù)雜性,但仍需要做一些設(shè)計(jì)來打造能夠充分發(fā)揮其作用的系統(tǒng)。該參考設(shè)計(jì)為設(shè)計(jì)人員展示了一個(gè)全面的解決方案,可幫助其設(shè)計(jì)原型。
例如,柵極驅(qū)動(dòng)器需要幾個(gè)去耦電容器才能正常運(yùn)行。在參考設(shè)計(jì)中,1微法(F)電容器(C13)實(shí)現(xiàn)了低壓側(cè)MOSFET驅(qū)動(dòng)電壓(DVDD)的去耦,而該電壓來自DRV8323R的內(nèi)部線性穩(wěn)壓器(圖5)。該電容器必須放置在盡可能靠近柵極驅(qū)動(dòng)器的位置,才能最大限度地減小回路阻抗。此外,需要第二個(gè)4.7F電容器(C10)對(duì)36V電池的直流電源輸入(PVDD)去耦。
圖5:DRV8323R柵極驅(qū)動(dòng)器應(yīng)用電路。應(yīng)盡量減少跡線長度,以限制EMI。(圖片來源:TexasInstruments)
二極管D6有助于隔離柵極驅(qū)動(dòng)器電源,以防在出現(xiàn)短路情況時(shí)電池電壓驟降。此二極管非常重要,因?yàn)樗拇嬖诳纱_保PVDD去耦電容器(C10)在短時(shí)電壓驟降情況下保持輸入電壓。
保持電壓可防止柵極驅(qū)動(dòng)器進(jìn)入不需要的欠壓鎖定狀態(tài)。C11和C12是使電荷能夠正常運(yùn)行的關(guān)鍵器件,也應(yīng)盡可能地將這兩個(gè)器件放置在靠近柵極驅(qū)動(dòng)器的位置。
一般來說,好的設(shè)計(jì)思路是盡量減少高壓側(cè)和低壓側(cè)柵極驅(qū)動(dòng)器的回路長度,其主要目的是減少EMI。高壓側(cè)回路是從DRV8323GH_X到功率MOSFET,并通過SH_X返回。低壓側(cè)回路是從DRV8323GL_X到功率MOSFET,并通過GND返回。
開關(guān)時(shí)序的重要性
如何選擇MOSFET是關(guān)系到BLDC電機(jī)性能和效率的關(guān)鍵。由于沒有兩個(gè)MOSFET系列完全相同,因此每次選擇MOSFET時(shí)都取決于所需的開關(guān)時(shí)間。即使是稍微弄錯(cuò)時(shí)序,也會(huì)導(dǎo)致效率低下、EMI升高以及電機(jī)可能出現(xiàn)故障等問題。
例如,不正確的時(shí)序會(huì)引起擊穿,這種情況會(huì)造成低壓側(cè)和高壓側(cè)MOSFET同時(shí)導(dǎo)通,進(jìn)而導(dǎo)致災(zāi)難性短路。其他定時(shí)問題包括寄生電容觸發(fā)瞬變,進(jìn)而可能損壞MOSFET。此外,外部短路、焊料橋或MOSFET在特定狀態(tài)下掛起也會(huì)引起問題。
TI將其DRV8323稱為智能柵極驅(qū)動(dòng)器,原因是這款驅(qū)動(dòng)器可以為設(shè)計(jì)人員提供時(shí)序及反饋控制,來幫助化解這些問題。例如,該驅(qū)動(dòng)器包括一個(gè)內(nèi)部狀態(tài)機(jī),可以防止柵極驅(qū)動(dòng)器出現(xiàn)短路、控制MOSFET橋的空載時(shí)間(IDEAD)并防止外部功率MOSFET出現(xiàn)寄生導(dǎo)通。
此外,DRV8323柵極驅(qū)動(dòng)器還含有一個(gè)用于高壓側(cè)和低壓側(cè)驅(qū)動(dòng)器的可調(diào)節(jié)推挽拓?fù)?,可?shí)現(xiàn)外部MOSFET橋的強(qiáng)力上拉和下拉,從而避免雜散電容問題。可調(diào)柵極驅(qū)動(dòng)器支持改變即時(shí)柵極驅(qū)動(dòng)電流(IDRIVE)和持續(xù)時(shí)間(tDRIVE)(無需限流柵極驅(qū)動(dòng)電阻),可對(duì)系統(tǒng)進(jìn)行微調(diào)(圖6)。
圖6:在某個(gè)三相BLDC電機(jī)的MOSFET橋中,高壓側(cè)(VGHx)和低壓側(cè)晶體管(VGLx)的電壓和電流輸入。IDRIVE和tDRIVE對(duì)于電機(jī)是否正常運(yùn)行及效率非常重要;IHOLD用于將柵極維持在所需狀態(tài);ISTRONG用于防止低壓側(cè)晶體管的柵極至源極電容出現(xiàn)導(dǎo)通。(圖片來源:TexasInstruments)
IDRIVE和tDRIVE最初應(yīng)根據(jù)外部MOSFET的特性進(jìn)行選擇,如柵極到漏極電荷、所需的上升和下降時(shí)間等。例如,如果IDRIVE太低,MOSFET的上升和下降時(shí)間就會(huì)更長,從而導(dǎo)致開關(guān)損耗過高。此外,上升和下降時(shí)間還(在某種程度上)決定了每個(gè)MOSFET的續(xù)流二極管恢復(fù)峰值所需的能量和持續(xù)時(shí)間,這兩個(gè)因素可能會(huì)進(jìn)一步降低效率。
當(dāng)更改柵極驅(qū)動(dòng)器狀態(tài)時(shí),IDRIVE會(huì)應(yīng)用于tDRIVE周期,該周期必須足夠長,才能確保柵極電容完全充電或放電。根據(jù)經(jīng)驗(yàn),選擇tDRIVE時(shí)應(yīng)確保其大約是MOSFET開關(guān)上升和下降時(shí)間的兩倍。請(qǐng)注意,tDRIVE不會(huì)增加PWM時(shí)間。如果在活動(dòng)期間收到PWM命令,還會(huì)終止該周期。
在tDRIVE周期之后,一個(gè)固定保持電流(IHOLD)會(huì)用于將柵極維持在所需狀態(tài)(上拉或下拉)。在高壓側(cè)導(dǎo)通期間,低壓側(cè)MOSFET柵極會(huì)受到強(qiáng)力下拉,以防晶體管的柵極至源極電容發(fā)生導(dǎo)通。
固定tDRIVE持續(xù)時(shí)間可確保在故障情況下(如MOSFET柵極短路),峰值電流時(shí)間受到限制。這可限制能量傳遞并防止柵極驅(qū)動(dòng)引腳和晶體管受損。
結(jié)論
模塊化電機(jī)驅(qū)動(dòng)器無需使用眾多分立元件,因而節(jié)省了空間,并增強(qiáng)了新一代緊湊型數(shù)控高功率密度BLDC電機(jī)的優(yōu)勢(shì)。這些智能柵極驅(qū)動(dòng)器還含有一項(xiàng)技術(shù),不僅能簡化設(shè)置功率MOSFET開關(guān)時(shí)序的復(fù)雜開發(fā)過程,還能減輕寄生電容的影響并降低EMI。
盡管如此,還是需要精心選擇外圍電路,如功率MOSFET和去耦電容器。不過如上所示,主流的電機(jī)驅(qū)動(dòng)器供應(yīng)商均會(huì)提供參考設(shè)計(jì),供開發(fā)人員設(shè)計(jì)自己的原型。
下一篇:新一代高性能可編程交流電源