鉅大LARGE | 點擊量:1397次 | 2018年08月13日
薄膜太陽能電池硅材料:現(xiàn)今太陽電池的主導材料
薄膜太陽能電池硅材料是現(xiàn)今太陽電池的主導材料,在成品太陽電池成本份額中,硅材料占了將近40%,而非晶硅太陽電池的厚度不到1μm,不足晶體硅太陽電池厚度的1/100,這就大大降低了薄膜太陽能電池制造成本,又由于非晶硅太陽電池的制造溫度很低(-200℃)、易于實現(xiàn)大面積等優(yōu)點,使其在薄膜太陽電池中占據(jù)首要地位,在制造方法方面有電子回旋共振法、光化學氣相沉積法、直流輝光放電法、射頻輝光放電法、濺謝法和熱絲法等。特別是射頻輝光放電法由于其低溫過程(-200℃),易于實現(xiàn)大面積和大批量連續(xù)生產(chǎn),現(xiàn)成為國際公認的成熟技術。在材料研究方面,先后研究了a-SiC窗口層、梯度界面層、μC-SiCp層等,明顯改善了電池的短波光譜響應.這是由于a-Si太陽電池光生載流子的生成主要在i層,入射光到達i層之前部分被p層吸收,對發(fā)電是無效的.而a-SiC和μC-SiC材料比p型a-Si具有更寬的光學帶隙,因此減少了對光的吸收,使到達i層的光增加;加之梯度界面層的采用,改善了a-SiC/a-Si異質結界面光電子的輸運特性.在增加長波響應方面,采用了絨面TCO膜、絨面多層背反射電極(ZnO/Ag/Al)和多帶隙疊層結構,即glass/TCO/p1i1n1/p2i2n2/p3i3n3/ZnO/Ag/Al結構.絨面TCO膜和多層背反射電極減少了光的反射和透射損失,并增加了光在i層的傳播路程,從而增加了光在i層的吸收.多帶隙結構中,i層的帶隙寬度從光入射方向開始依次減小,以便分段吸收太陽光,達到拓寬光譜響應、提高轉換效率之目的。在提高疊層電池效率方面還采用了漸變帶隙設計、隧道結中的微晶化摻雜層等,以改善載流子收集。
上一篇: 鈣鈦礦型薄膜太陽能電池取得突破性進展