鉅大LARGE | 點擊量:5645次 | 2018年10月05日
鋰電池老化對電池性能有什么影響
對于不同的電池體系,三元正極/石墨負(fù)極鋰電池、磷酸鐵鋰正極/石墨負(fù)極鋰電池抑或是鈦酸鋰負(fù)極電池,需要根據(jù)材料特性及鋰電池特性進行針對性試驗。
鋰電池的生產(chǎn)工藝可以分為前道極片制造、中道電芯封裝、后道電池活化三個階段,電池活化階段的目的是讓電池中的活物質(zhì)和電解液經(jīng)過充分活化以達(dá)到電化學(xué)性能穩(wěn)定?;罨A段包括預(yù)充電、化成、老化、定容等階段。預(yù)充電和化成的目的是為了讓正負(fù)極材料進行最初幾次的充放電來激活材料,使材料處于最佳的使用狀態(tài)。老化的目的主要有幾個:一是讓電解液的浸潤更加良好,有利于電池性能的穩(wěn)定;二是正負(fù)極材料中的活性物質(zhì)經(jīng)過老化后,可以促使一些副作用的加快進行,例如產(chǎn)氣、電解液分解等,讓鋰電池的電化學(xué)性能快速達(dá)到穩(wěn)定;三是通過老化一段時間后進行鋰電池一致性篩選?;芍箅娦镜碾妷翰环€(wěn)定,其測量值會偏離實際值,老化后的電芯電壓、內(nèi)阻更為穩(wěn)定,便于篩選一致性高的電池。
老化制度對鋰電池性能的影響因素主要有兩個,即老化溫度和老化時間。除此之外,還有老化時電池處于封口還是開口的狀態(tài)也比較重要。對于開口化成來說,如果廠房可以控制好濕度可以老化后再封口。如果采用高溫老化,封口后老化比較好。對于不同的電池體系,三元正極/石墨負(fù)極鋰電池、磷酸鐵鋰正極/石墨負(fù)極鋰電池抑或是鈦酸鋰負(fù)極電池,需要根據(jù)材料特性及鋰電池特性進行針對性試驗。在試驗設(shè)計中,可以通過鋰電池的容量差別、內(nèi)阻差別、壓降特點來確定最佳的老化制度。
一、三元或磷酸鐵鋰正極/石墨負(fù)極鋰電池
對于三元作為正極材料,石墨作為負(fù)極材料的鋰電池來說,鋰離子電池的預(yù)充化成階段會在石墨負(fù)極的表面形成一層固態(tài)電解質(zhì)膜(SEI),此種膜的形成電位約在0.8V左右,SEI允許離子穿透而不允許電子通過,由此在形成一定厚度后會抑制電解液的進一步分解,可以起到防止電解液分解引起的電池性能下降。但是化成后形成的SEI膜結(jié)構(gòu)緊密且孔隙小,將電池再進行老化,將有助于SEI結(jié)構(gòu)重組,形成寬松多孔的膜,以此提高鋰電池的性能。三元/石墨鋰電池的老化一般選擇常溫老化7天-28天時間,但是也有的廠采用高溫老化制度,老化時間為1-3天,所謂的高溫一般是38℃-50℃之間。高溫老化只是為了縮短整個生產(chǎn)周期,其目的和常溫老化一樣,都是讓正負(fù)極、隔膜、電解液等充分進行化學(xué)反應(yīng)達(dá)到平衡,讓鋰電池達(dá)到更穩(wěn)定的狀態(tài)。
二、鈦酸鋰負(fù)極鋰電池
俗稱的鈦酸鋰電池是負(fù)極采用了鈦酸鋰的電池,正極材料主要還是三元、鈷酸鋰等材料。鈦酸鋰電池與石墨負(fù)極電池的不同之處是鈦酸鋰的嵌鋰電位是1.55V(相對于鋰金屬),高于SEI形成的0.8V,所以充放電過程中不會形成固態(tài)電解質(zhì)膜(SEI)也不會形成枝晶鋰,從而具有更高的安全性。這就意味著鈦酸鋰充電過程中,不斷的有電子與電解液發(fā)生反應(yīng),生成副產(chǎn)物及產(chǎn)生氫氣、CO、CH4、C2H4等氣體,會導(dǎo)致電池的鼓包。鈦酸鋰的鼓包問題主要得依靠材料性質(zhì)的改變來緩解,例如材料表面包覆、改變粒徑分布,找到合適的電解液等。此外,通過優(yōu)化預(yù)充、化成、老化的制度也可以適當(dāng)減輕鈦酸鋰鼓包現(xiàn)象。鈦酸鋰電池的老化制度一般首選高溫老化制度,老化溫度采用40℃-55℃,老化時間一般是1-3天,老化之后需要進行負(fù)壓排氣。進行多次高溫老化,使電池內(nèi)部水分充分反應(yīng),將氣體排出后可以有效抑制鈦酸鋰電池的脹氣問題,提高其循環(huán)壽命。
無論對于哪種體系的電池,老化是必不可少的一道工序。鋰電池的老化雖然理解起來是對鋰電池的損耗和破壞,但是事實上卻是篩選一致性高的電池,剔除不良品的有效途徑。只有通過老化的方式,才能選出適宜進行組包的鋰電池,提高電動工具的使用壽命。
磷酸鐵鋰材料在電池加工中的常見問題分析
磷酸鐵鋰因鋰離子的擴散系數(shù)低,導(dǎo)電性上較差,所以當(dāng)下做法是將其顆粒做小,甚至是做成納米級數(shù),通過縮短LI+和電子的遷移路徑,來提升其充放電速度(理論上,遷移時間和遷移路徑平方成反比)。但由此給電池加工帶來一系列的難題。
首先遇到的是材料分散問題
制漿是電池生產(chǎn)過程中最為關(guān)鍵的工序之一,其核心任務(wù)就是把活性物質(zhì)、導(dǎo)電劑、粘結(jié)劑等物料均勻的混合,使得材料性能能夠更好的發(fā)揮。要混勻,先要能分散。顆粒減小,相應(yīng)的比表面也就增大,表面能也就增大,顆粒間發(fā)生聚合的趨勢就增強??朔砻婺芊稚⑺枰哪芰恳簿驮酱蟆,F(xiàn)在普遍用的是機械攪拌,機械攪拌能量分布是不均勻的,只有在一定的區(qū)域內(nèi),剪切強度足夠大,能量足夠高,才能把聚合的顆粒分開。要提升分散能力,一個是在攪拌設(shè)備的結(jié)構(gòu)上優(yōu)化,不改變最大剪切速度的情況下提高有效分散區(qū)域的空間比例;一個是提高攪拌功率(提高攪拌速度),提升剪切速度,相應(yīng)的有效分散空間也會增大。前者屬設(shè)備上的問題,提升空間有多大,涂布在線不做評論。后者,提升空間有限,因為剪切速度提到一定限度,就會對材料造成傷害,導(dǎo)致顆粒破損。
較為有效的方法是采用超聲波分散技術(shù)。只是超聲波設(shè)備價格較高,前些時候接觸的一家,其價格和進口的日本機械攪拌機相當(dāng)。超聲分散工藝時間短,總體能耗降低,漿料分散效果好,材料顆粒的聚合得到有效延緩,穩(wěn)定性大為提高。
另外,可以通過使用分散劑來改善分散效果。
涂布均一性問題
涂布不均,不僅電池一致性就不好,還關(guān)系到設(shè)計、使用安全性等問題。所以,電池制作過程中對涂布均一性的控制很嚴(yán)格。做配方、涂布工藝的知道,材料顆粒越小,涂布越難做均勻。就其機理,我尚未看到相關(guān)的解釋。涂布在線認(rèn)為是電極漿料的非牛頓流體特性引起的。
電極漿料應(yīng)屬非牛頓流體中的觸變流體,該類流體的特點是靜止時粘稠,甚至呈固態(tài),但攪動后變稀而易于流動。粘結(jié)劑在亞微觀狀態(tài)下是線性或網(wǎng)狀結(jié)構(gòu),攪動時,這些結(jié)構(gòu)被破壞,流動性就好,靜止后,它們又重新形成,流動性就變差。磷酸鐵鋰顆粒細(xì)小,同等質(zhì)量下,顆粒數(shù)量增加,要把他們聯(lián)結(jié)起來組成有效的導(dǎo)電網(wǎng)絡(luò),需要的導(dǎo)電劑的量也相應(yīng)增加。顆粒小、導(dǎo)電劑用量增加,所需的粘結(jié)劑用量也上升。靜置時,更容易形成網(wǎng)狀結(jié)構(gòu),流動性比常規(guī)材料差。
從攪拌器取出后漿料到涂布的過程中,很多廠商還是采用周轉(zhuǎn)桶轉(zhuǎn)移,過程中漿料不攪拌或者攪拌強度低,漿料的流動性發(fā)生變化,逐漸變得粘稠,以至于像果凍一樣。流動性不好,導(dǎo)致涂布的均一性不好,表現(xiàn)為極片面密度公差增大,表面形貌不好。
根本的是從材料上進行改善,如提高導(dǎo)電性加大顆粒、顆粒球形化等,短時間內(nèi)可能有效果較為有限。立足現(xiàn)有材料,從電池加工的角度來說,改善的途徑,可從以下幾項進行嘗試:
1
采用“線性”的導(dǎo)電劑
所謂的“線形”“顆粒形”導(dǎo)電劑是筆者形象的說法,學(xué)術(shù)上可能不是如此描述。
采用“線形”導(dǎo)電劑,目前主要是VGCF(碳纖維)和CNTs(碳納米管)、金屬納米線等。它們直徑在幾個納米到幾十納米,長度在幾十微米以上甚至于幾厘米,而目前常用的“顆粒形”導(dǎo)電劑(如SuperP,KS-6)尺寸一般在幾十個納米,電池材料的尺寸為幾個微米。“顆粒形”導(dǎo)電劑和活性物質(zhì)組成的極片,接觸類似點和點之間的接觸,每個點能只與周圍的點發(fā)生接觸;“線形”導(dǎo)電劑與活性物質(zhì)組成的極片中,是點和線、線和線的接觸,每個點可以同時和多根線接觸,每根線也可以同時和多根線接觸,接觸的節(jié)點更多,導(dǎo)電通道也就更為通暢,導(dǎo)電能力也就更好。使用多種不同形態(tài)的導(dǎo)電劑組合,可以發(fā)揮更好的導(dǎo)電效果,具體如何使選擇導(dǎo)電劑,對于電池制作是一個很值得探索的問題。
使用CNTS或者VGCF等“線性”導(dǎo)電劑可能產(chǎn)生的影響有:
(1)線性導(dǎo)電劑在一定程度上提升粘結(jié)效果,提高極片柔韌性和強度;
(2)減少導(dǎo)電劑用量(記得曾有報道說CNTS的導(dǎo)電效能為同質(zhì)量(重量)常規(guī)顆粒導(dǎo)電劑的3倍),綜合(1),膠用量也有可能降低,活性物質(zhì)含量可提高;
(3)改善極化,降低接觸阻抗,改善循環(huán)性能;
(4)導(dǎo)電網(wǎng)絡(luò)接觸節(jié)點多,網(wǎng)絡(luò)更為完善,倍率性能較常規(guī)導(dǎo)電劑更為出色;散熱性能提升,對高倍率電池很有意義;
(5)吸收性能得到改善;
(6)材料價格較高,成本上升。1Kg導(dǎo)電劑,常用的SUPERP僅為數(shù)十元,VGCF大約兩三千元,CNTS比VGCF略高(當(dāng)添加量為1%時,1KgCNTs以4000元計算,大約每Ah成本增加0.3元);
(7)CNTS、VGCF等比表面較高,如何分散是使用中必需解決的一個問題,否則分散不好性能得不大發(fā)揮??山柚暦稚⒌仁侄?。有CNTs廠家提供分散好的導(dǎo)電液。
2
改善分散效果
分散效果好的漿料,則顆粒接觸團聚的概率會大為降低,漿料的穩(wěn)定性會得到很大改善。通過配方、配料工步的改善在一定程度上可以改善分散效果,采用前面提及的超聲分散也是一個有效方法。
3
改進漿料轉(zhuǎn)移過程
漿料儲存時可考慮提高攪拌速度避免漿料粘稠;對于使用周轉(zhuǎn)桶轉(zhuǎn)移漿料的,盡可能縮短出料到涂布的時間,有條件的改用管道輸送,改善漿料粘稠現(xiàn)象。
4
采用擠壓涂布(噴涂)
擠壓涂布可以改善刮刀涂布表面紋路、厚度不均等現(xiàn)象,但是設(shè)備價格較高,對漿料的穩(wěn)定性要求較高。
干燥困難
由于磷酸鐵鋰比表面大、粘結(jié)劑用量大,制備漿料時所需要的溶劑用量也就大,涂布后干燥也就較為困難。如何控制溶劑的揮發(fā)速度,則是一個值得關(guān)注的問題。溫度高、風(fēng)量大,干燥速度快,產(chǎn)生的空隙也就大,同時還可能帶動膠質(zhì)的遷移,導(dǎo)致涂層中材料分布不均,如果膠質(zhì)在表層產(chǎn)生聚集,則會阻礙帶電粒子的傳導(dǎo),增大阻抗。溫度低、風(fēng)量低,溶劑逸出慢,干燥時間長,產(chǎn)能低。
粘結(jié)性能較差
磷酸鐵鋰材料的顆粒小,比表面比比鈷酸鋰、錳酸鋰配增大了很多,需要的粘結(jié)劑也就更多。但是粘結(jié)劑用多了,降低活性物質(zhì)的含量,能量密度就降低,所以可能的情況下,電池生產(chǎn)過程中會盡力減少粘結(jié)劑用量。為改善粘結(jié)效果,目前磷酸鐵鋰加工的通用做法一方面提高粘結(jié)劑的分子量(分子量高,粘結(jié)能力提高,但是分散越困難、阻抗越高),一方面是提高粘結(jié)劑用量。目前似乎結(jié)果還不是讓人滿意。
柔韌性較差
目前磷酸鐵鋰極片加工時,普遍感覺極片較硬、較脆,對疊片來說可能影響不是稍小,但對是在卷繞時,則是很為不利。極片柔韌性不好,卷繞彎曲時就容易掉粉、斷裂,導(dǎo)致短路等不良。這方面的機理解釋尚不清楚,猜測是顆粒小,涂層的彈性空間小。降低壓實密度可以有所改善,但是這樣體積能量密度也就降到。原本磷酸鐵鋰的壓實密度就比較低,降低壓實密度是不得以才會采取的手段。
鎳含量提高高鎳三元電池有什么影響?
要想提高電池的能量密度,提升車輛續(xù)駛里程,當(dāng)前主流觀點是在高鎳方向上,提高高鎳三元的安全性達(dá)到車輛使用要求。
最近新聞報道的動力鋰電池技術(shù)路線,提起高鎳三元鋰電池將在今后幾年內(nèi)成為動力電池的主力,能量密度邁上300Wh/kg的臺階。本文旨在圍觀,關(guān)心一下高鎳三元的前世今生。
1、鋰電池工作原理
當(dāng)前常見的鋰電池,主要有三元鋰、磷酸鐵鋰、錳酸鋰、鈷酸鋰等等,都是按照正極材料的類型來命名。與之配對使用的商業(yè)化負(fù)極材料一般都是石墨負(fù)極?;竟ぷ髟砣缦聢D所示。
如上圖所示。在充電過程中,由于電池外加端電壓的作用,正極集流體附近的電子在電場驅(qū)動下向負(fù)極運動,到達(dá)負(fù)極后,與負(fù)極材料中的鋰離子結(jié)合,形成局部電中性存放在石墨間隙中;消耗了部分鋰離子的負(fù)極表面,鋰離子濃度變低,正極與負(fù)極之間形成離子濃度差。
在濃差驅(qū)動下,正極材料中的鋰離子從材料內(nèi)部向正極表面運動,并沿著電解質(zhì),穿過隔膜,來到負(fù)極表面;進一步在電勢驅(qū)動作用下,向負(fù)極材料深處擴散,與從外電路過來的電子相遇,局部顯示電中性滯留在負(fù)極材料內(nèi)部。
放電過程則剛好相反,包含負(fù)載的回路閉合后,放電過程開始于電子從負(fù)極集流體流出,通過外電路到達(dá)正極;終于鋰離子嵌入正極材料,與外電路過來的電子結(jié)合。
負(fù)極石墨為層狀結(jié)構(gòu),鋰離子的嵌入和脫出的方式,在不同類型的鋰離子中沒有太大差異。不同正極材料,其晶格結(jié)構(gòu)存在明顯差異,充放電過程中的鋰離子擴散進出,過程略有不同。
2、主要正極材料的類型和特點
當(dāng)前商業(yè)化比較充分的正極材料主要有鈷酸鋰,磷酸鐵鋰,錳酸鋰和三元鋰四種。其中,鈷酸鋰雖然能量密度等方面存在明顯優(yōu)勢,但是安全問題成了瓶頸,使用的范圍越來越小。錳酸鋰,循環(huán)性能比較差,高溫性能不好,雖然抗過充能力強,成本又低,但現(xiàn)在主要只在低端或低速車輛上還有使用,市場份額也在縮小。
只剩下磷酸鐵鋰和三元鋰是當(dāng)前真正的主流,二者一個占據(jù)能量密度和低溫性能的優(yōu)勢,另一個則擁有循環(huán)壽命和安全性的優(yōu)勢,國家政策和終端用戶在二者之間有些難于抉擇。目前為止,公交車主要使用磷酸鐵鋰,乘用車等對續(xù)航和客戶體驗要求較高的車型則選擇三元鋰電池。
3、三元鋰正極材料結(jié)構(gòu)和特點
三元材料是過去幾年的熱點,其中Ni成分,可以提高材料活性,提高能量密度;Co成分也是活性物質(zhì),既能穩(wěn)定材料的層狀結(jié)構(gòu),又能減小陽離子混排,便于材料深度放電,從而提高材料的放電容量;Mn成分,在材料中起到支撐作用,提供充放電過程中的穩(wěn)定性。三元鋰,基本上綜合體現(xiàn)了幾種材料的優(yōu)點。
在三元材料這個大的類別下面,材料中三種金屬元素比例不同,可以看成不同種類的三元材料。一類是Ni:Mn等量型,第二類是Ni:Mn不等量型。
等量型的代表是NCM424和NCM111。在充放電過程中,+4價的Mn不變價,在材料中起到穩(wěn)定結(jié)構(gòu)的作用,+2價的Ni變?yōu)?4價,失去兩個電子,使得材料有著高的比容量。
Ni、Mn不等量型,就是本文的主角,又叫高鎳型三元鋰,主要的代表型號是NCM523,NCM622和NCM811。富鎳型三元材料在電壓平臺低于4.4V(相對于Li+/Li)時,一般認(rèn)為主要是Ni為+2/+3價參與氧化還原反應(yīng),化合價升高到+4價。當(dāng)電壓高于4.4V時,Co3+參與反應(yīng)變?yōu)?4價,Mn4+不參加反應(yīng)起穩(wěn)定結(jié)構(gòu)作用。
高鎳三元給正極帶來的影響
不同比例NCM材料的優(yōu)勢不同,可以根據(jù)具體的應(yīng)用要求加以選擇。Ni表現(xiàn)高的容量,低的安全性;Co表現(xiàn)高成本,高穩(wěn)定性;Mn表現(xiàn)高安全性、低成本。要想提高電池的能量密度,提升車輛續(xù)駛里程,當(dāng)前主流觀點是在高鎳方向上,提高高鎳三元的安全性達(dá)到車輛使用要求。在三元及前文提及的磷酸鐵鋰、錳酸鋰和鈷酸鋰等成熟商用技術(shù)路線以外,也存在著鋰硫電池,鋰空氣電池以及全固態(tài)電池等多個技術(shù)方向,但都距離成熟商用還比較遠(yuǎn)。
三元鋰電池的電化學(xué)性質(zhì)和安全性主要取決于微觀結(jié)構(gòu)(顆粒形態(tài)和體積結(jié)構(gòu)穩(wěn)定性)
和物理化學(xué)性質(zhì)(Li+擴散系數(shù)、電子傳導(dǎo)率、體積膨脹率和化學(xué)穩(wěn)定性)的影響。
Ni增加使循環(huán)性能變差;熱穩(wěn)定性變差;充放電過程中表面反應(yīng)不均勻;反應(yīng)產(chǎn)物中存在大比例的Ni2+,導(dǎo)致材料呈氧化性,緩慢氧化電解質(zhì),過程中放出氣體。
影響一:高鎳循環(huán)性能問題
隨著鎳含量的提高,正極材料的穩(wěn)定性隨之下降。主要表現(xiàn)形式就是循環(huán)充放電的容量損失和高溫環(huán)境容量加速衰減。
?循環(huán)中的容量衰減機理
循環(huán)過程中存在的容量衰減因素主要有陽離子混排、應(yīng)力誘導(dǎo)微裂紋的產(chǎn)生、生產(chǎn)過程引入雜質(zhì)、導(dǎo)電炭黑的重新分布等,其中以陽離子混排和微裂紋的產(chǎn)生兩個因素對容量衰減的作用最為顯著。
陽離子混排,指二價Ni離子本身體積與鋰離子近似,在放電時鋰離子大量脫出的時候,受到外界因素作用,占據(jù)Li離子晶格中位置的現(xiàn)象。離子的錯位,帶來晶格類型的改變,其嵌鋰能力也隨之改變。在充放電過程中,正極材料表面脫嵌鋰的壓力最大,速度最快,因此表面常常因為這種陽離子混排帶來表面晶格的變化,這個現(xiàn)象又被叫做表面重構(gòu)。
Ni含量越高,三價不穩(wěn)定Ni離子還原成二價Ni離子的概率就越高,則發(fā)生陽離子混排的機會就越多。另外兩種金屬Mn和Co,雖然也存在混排的可能性,但與Ni相比,則比例小得多。
抑制陽離子混排,研究者主要從以下幾個角度考慮:
1)采取措施減少二價Ni離子的生成,從根本上截斷發(fā)生混排的根源;
2)摻雜與二價Ni離子體積相近的Mg離子,Mg離子能夠比Ni更早的搶占Li留下的空位,避免了Ni的進入。而Mg離子并不直接參與充放電過程,嵌入后就可以穩(wěn)定在位置上,對材料結(jié)構(gòu)起到支撐作用。
3)調(diào)整正極材料原料中的Ni與Li的摩爾比以及調(diào)整制備工藝,將原材料對陽離子混排的影響降低。
生產(chǎn)過程引入雜質(zhì),在正極原材料制備過程中,與空氣中水和Co2等的反應(yīng),生成了原本不存在的材料種類,比如碳酸鋰等。當(dāng)材料表面存在較多的Li2CO3,在循環(huán)過程中分解產(chǎn)生氣體,吸附于材料的表面造成活性物質(zhì)與電解液的接觸不佳,極化增大,循環(huán)性能也隨之惡化。
影響二:微裂紋
正極材料在充放電的過程中,體積會發(fā)生變化,Ni含量越高,體積膨脹的比例越大。裂紋的產(chǎn)生還依賴充放電截止電勢的大小,所以通常高鎳系層狀氧化物正極的工作電壓(相對于鋰金屬負(fù)極)不超過4.1V,目的是為了保證不發(fā)生不可逆相變,減小內(nèi)應(yīng)力。
晶體上的裂紋和晶體之間的分離,使得高鎳三元材料正極晶粒必然要承受更大的體積變量。體積循環(huán)變動的過程中,一次晶粒內(nèi)部的晶界之間可能產(chǎn)生裂紋,而晶粒與晶粒之間的額距離也會逐步拉大,出現(xiàn)部分晶粒離開正極獨立存在的現(xiàn)象。更多的晶面與電解液接觸,形成更多的SEI膜,消耗了電解質(zhì)和活性材料的同時,增加了鋰離子在電極上擴散的電阻。
減弱單體電壓范圍內(nèi)的相變趨勢,是抑制微裂紋的方法。研究者目前的主要方向如下。
1)抑制陽離子混排的鎂離子摻雜,包含鎂離子的晶格,膨脹的方向大體一致,可以起到抑制微裂紋的作用;
2)將NCM811材料制備成內(nèi)部均勻嵌入Li2MnO3結(jié)構(gòu)單元的兩相復(fù)合材料,可以減弱體積變化。
影響三:導(dǎo)電物質(zhì)的重新分布
這個影響因素主要在說NCA,NCM還沒有相關(guān)研究公布。經(jīng)歷了一定周期的循環(huán)以后,導(dǎo)電物質(zhì),在晶粒表面重新分布,或者有一部分脫離活性物質(zhì)晶體,這使得此后的晶體各個部分,動力學(xué)環(huán)境變得不同,進而造成晶體裂紋。裂紋出現(xiàn)后的進一步影響與前面“微裂紋”中所述一致。
?高溫環(huán)境容量加速衰減機理
高溫循環(huán)一定周期后,發(fā)現(xiàn)晶界之間存在大量失去活性的二價、三價Ni離子,退出循環(huán)的Ni離子,無法參與電荷補償,電池容量衰減比例近似的與這部分失活離子數(shù)量相當(dāng),推測高溫低電壓窗口下的容量衰減主要形式是Ni離子的失去活性造成的。
另外,高溫循環(huán),容易帶來正極材料晶格塌陷,從NiO6蛻變?yōu)镹iO,從而失去活性。有試驗現(xiàn)象表明,SEI膜的電導(dǎo)率差,也會造成高溫循環(huán)容量衰減。
電動汽車在追求整體性能超越傳統(tǒng)燃油車的大背景下,對于能量密度的追求可以說是動力鋰電池十年以上的熱點。同時產(chǎn)生的安全問題,則是電池大規(guī)模商用化必須邁過去的門檻。而動力電池包內(nèi)的其他設(shè)備的進步,比如電池管理系統(tǒng),比如各種傳感器等等,也能在進程中彌補一部分電池安全性的不足。
上一篇:鋰電池真的能成為清潔電源?
下一篇:相機鋰電池可以帶上飛機嗎?