鉅大LARGE | 點擊量:858次 | 2018年10月22日
引起動力電池燃燒的原因分析
爆炸是動力電池系統(tǒng)較為常見的危害表現(xiàn),造成的影響,也更為嚴重,不但會造成財產(chǎn)損失和環(huán)境破壞,甚至?xí)斐扇松韨蛏kU。
熱失控誘因
導(dǎo)致動力電池系統(tǒng)發(fā)生燃燒或爆炸的可能原因有:
一動力電池(電芯)的放熱副反應(yīng)導(dǎo)致熱失控,引燃電解液和其他可燃物質(zhì);
動力電池系統(tǒng)的高壓回路中局部連接抗阻抗過大,有大電流流過時倒至溫度上升達到著火點溫度,引燃動力電池系統(tǒng)內(nèi)部的可燃物質(zhì);
動力電池系統(tǒng)外部發(fā)生燃燒,導(dǎo)致動力電池系統(tǒng)內(nèi)部溫度持續(xù)上升,達到著火點溫度,引燃內(nèi)部的可燃物質(zhì)。
針對電動汽車的使用的情況分析,第一種情況的發(fā)生概率較高,危險系數(shù)也較高,電芯的放熱副反應(yīng)導(dǎo)致熱失控是動力電池系統(tǒng)發(fā)生燃燒或爆炸的主要原因。
鋰離子電池內(nèi)部主要放熱反應(yīng)有:
ESI膜的分解,溫度范圍是90~120℃;
負極與電解液的反應(yīng),溫度達到120℃以上;
電解液分解,溫度大概在200℃左右;
正極與電解液的反應(yīng),伴隨正極分解析出氧氣,溫度范圍在180~500℃;
負極與粘結(jié)劑的反應(yīng),大概在240度以上。
電芯熱失控(燃燒、爆炸)的根本原因是電芯內(nèi)部的放熱副反應(yīng)導(dǎo)致熱量累積,電芯對外熱交換的速率小于熱量積累速率,溫度持續(xù)升高,直接達到著火點溫度,引起燃燒和爆炸。
電芯內(nèi)部的熱過程遵循能量守恒:Qp=Qe+Qa
公式中Qp為電芯內(nèi)部各種負反應(yīng)所產(chǎn)生的熱量,Qe為電芯與環(huán)境交換的熱量,也就是散熱,Qa是電信自己吸收的熱量及熱積累。如果Qe≥Qp則Qa為為負值或零,電芯內(nèi)部溫度不會上升,不會產(chǎn)生熱失控;如果Qe
從上面的分析可以看出,如果不能阻斷電芯內(nèi)部的放熱副反應(yīng),電信內(nèi)部的溫度就會一直上升,直至發(fā)生熱失控事件,要降低事故發(fā)生的風(fēng)險,可采取的措施有:
采取保護措施,降低外部突發(fā)因素發(fā)生概率(比如過充、過放、過熱、短路、擠壓、穿刺等);
阻斷放熱副反應(yīng)的正反饋過程,如在PACK模組在采用邦定保險絲工藝,或在正負極材料與集流體之間增加PTC材料;
降低放熱副反應(yīng)所產(chǎn)生的熱量,如選擇磷酸鐵鋰正極材料,改變電解液的有機溶劑成分等;
提高著火點溫度,如在電解液中添加阻燃材料,選用陶瓷隔膜等;
提高散熱能力,避免熱積累,如力朗電池采用高效的液冷設(shè)計方案,也有個別方案將整個電池,浸在冷卻液中。
以上,所總結(jié)的熱失控機理與防范措施,在電池全系電池設(shè)計、制造中都有實踐,但是針對實際中不同材料體系會有不同化學(xué)特性,其電芯熱失控機理存在不同,不同的系統(tǒng)設(shè)計也會導(dǎo)致系統(tǒng)級的危險和解決措施各不相同。