XX00无码在线_日日夜夜 一二三_国人av偷拍盗摄摄像_久久人妻无码一区二区三区

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

固態(tài)鋰電池研究進展與展望介紹

鉅大LARGE  |  點擊量:1506次  |  2019年02月20日  

全固態(tài)鋰離子電池采用固態(tài)電解質(zhì)替代傳統(tǒng)有機液態(tài)電解液,有望從根本上解決電池安全性問題,是電動汽車和規(guī)?;瘍δ芾硐氲幕瘜W電源。為了實現(xiàn)大容量化和長壽命,從而推進全固態(tài)鋰離子電池的實用化,電池關鍵材料的開發(fā)和性能的優(yōu)化刻不容緩,主要包括制備高室溫電導率和電化學穩(wěn)定性的固態(tài)電解質(zhì)以及適用于全固態(tài)鋰離子電池的高能量電極材料、改善電極/固態(tài)電解質(zhì)界面相容性。


固態(tài)電池介紹


傳統(tǒng)鋰離子電池采用有機液體電解液,在過度充電、內(nèi)部短路等異常的情況下,電池容易發(fā)熱,造成電解液氣脹、自燃甚至爆炸,存在嚴重的安全隱患。20世紀50年代發(fā)展起來的基于固體電解質(zhì)的全固態(tài)鋰電池,由于采用固體電解質(zhì),不含易燃、易揮發(fā)組分,徹底消除電池因漏液引發(fā)的電池冒煙、起火等安全隱患,被稱為最安全電池體系。對于能量密度,中、美、日三國政府希望在2020年開發(fā)出400~500Wh/kg的原型器件,2025~2030年實現(xiàn)量產(chǎn),要實現(xiàn)這一目標,目前公認的最有可能的即為金屬鋰負極的使用,金屬鋰在傳統(tǒng)液態(tài)鋰離子電池中存在枝晶、粉化、SEI(固態(tài)電解質(zhì)界面膜)不穩(wěn)定、表面副反應多等諸多技術挑戰(zhàn),而固態(tài)電解質(zhì)與金屬鋰的兼容性使得使用鋰作負極成為可能,從而顯著實現(xiàn)能量密度的提升。


不同種類電解質(zhì)及其鋰離子電池體系的性質(zhì)對比


固態(tài)電解質(zhì)研究進展

過針刺 低溫防爆18650 2200mah
符合Exic IIB T4 Gc防爆標準

充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%

對于固態(tài)電池,固態(tài)電解質(zhì)是其區(qū)別于其他電池體系的核心組成部分,理想的固態(tài)電解質(zhì)應具備工作溫度區(qū)間(特別是常溫)保持高的鋰離子電導率;可忽略或者不存在晶界阻抗;與電極材料的熱膨脹系數(shù)匹配;在電池充放電過程中,對正負極電極材料保持良好的化學穩(wěn)定性,尤其是金屬鋰或鋰合金負極;電化學寬口寬,分解電壓高;不易吸濕,價格低廉,制備工藝簡單,環(huán)境友好。


目前,量產(chǎn)聚合物固態(tài)電池中聚合物電解質(zhì)的材料體系是聚環(huán)氧乙烷(PEO)。PEO類聚合物電解質(zhì)的特點是在高溫下離子電導率高,容易成膜,易于加工,與正極復合后可以形成連續(xù)的離子導電通道,正極面電阻較小。PEO的氧化電位在3.8V,鈷酸鋰、層狀氧化物、尖晶石氧化物等高能量密度正極難以與之匹配,需要對其改性;其次,PEO基電解質(zhì)工作溫度在60~85℃,電池系統(tǒng)需要熱管理,這對于動力和儲能應用來說需要專門的電池系統(tǒng)的設計;再次,該類電池直接使用金屬鋰,充放電過程中在界面處不均勻的沉積仍然存在鋰枝晶穿過聚合物膜造成內(nèi)短路的隱患,此外倍率特性也有待提高。發(fā)展耐高電壓、室溫離子電導率高、具有阻擋鋰枝晶機制、力學特性良好的聚合物電解質(zhì)是重點研究方向。


無機固態(tài)電解質(zhì)主要包括氧化物和硫化物。已經(jīng)小批量生產(chǎn)的固態(tài)電池主要是以無定形LiPON為電解質(zhì)的薄膜電池。無機固態(tài)電解質(zhì)的優(yōu)點是有些材料體相離子電導率高,能夠耐受高電壓,電化學、化學、熱穩(wěn)定性好,抑制鋰枝晶方面有一定效果。


相對于氧化物,硫化物由于相對較軟,更容易加工,通過熱壓法可以制備全固態(tài)鋰電池。最近展示的固態(tài)鋰電池室溫下甚至能在60C下工作,雖然此時體積和質(zhì)量能量密度會顯著下降,但至少這一結果體現(xiàn)了固態(tài)電池在高功率輸出方面的潛力。硫化物電解質(zhì)還存在空氣敏感,容易氧化,遇水容易產(chǎn)生硫化氫等有害氣體的問題。通過在硫化物中復合氧化物或摻雜,這一問題可以在一定程度上改善,但最終能否滿足應用對安全性、環(huán)境友好特性的要求還需要實驗驗證?,F(xiàn)階段,采用無機陶瓷固體電解質(zhì)的全固態(tài)大容量電池電芯的質(zhì)量和體積能量密度還顯著低于現(xiàn)有液態(tài)鋰離子電池。


正極材料研究進展

無人船智能鋰電池
IP67防水,充放電分口 安全可靠

標稱電壓:28.8V
標稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應用領域:勘探測繪、無人設備

除了固態(tài)電解質(zhì),電極材料也是影響全固態(tài)電池性能的關鍵因素。雖然固態(tài)電解質(zhì)與電極材料界面基本不存在固態(tài)電解質(zhì)分解的副反應,但是固體特性使得電極/電解質(zhì)界面相容性不佳,高的界面阻抗嚴重影響了離子的傳輸,最終導致固態(tài)電池的循環(huán)壽命低、倍率性能差。另外,全固態(tài)鋰離子電池的開發(fā)與應用未來必然會從小型全固態(tài)薄膜電池推廣至大型全固態(tài)儲能型電池,然而傳統(tǒng)的電極材料已經(jīng)無法滿足目前對高能量密度的要求?;谏鲜鲈?,對于電極材料的研究主要集中在兩個方面:一是對電極材料及其界面進行改性,改善電極/電解質(zhì)界面相容性;二是開發(fā)新型電極材料,從而進一步提升固態(tài)電池的電化學性能。


高能量密度的正極材料具有較大的嵌鋰容量和較高的電壓,充放電過程中會有顯著的體積變化。采用固態(tài)電解質(zhì)時,在正極與固體電解質(zhì)膜的界面,以及正極內(nèi)部與固體電解質(zhì)相接觸的界面,都有可能出現(xiàn)接觸變差的情況。解決的辦法包括在正極顆粒表面原位或非原位沉積或熱壓一層固體電解質(zhì);或者在正極顆粒孔隙填充有一定彈性的固體電解質(zhì),形成連續(xù)離子導電相,類似于液體電解質(zhì);或者在正極側(cè)引入液體,形成固-液復合體系。由于難以單獨注液到正極,引入液體后,是否能具備固態(tài)鋰電池兼具高能量密度和安全性的優(yōu)點是關鍵,這取決于引入液體的電化學特性和安全特性,以及金屬鋰電極是否預先完全被保護。既然現(xiàn)有的液體電解質(zhì)的安全性已經(jīng)基本滿足要求,因此,在固態(tài)電池中,添加液體減少正極側(cè)接觸電阻,應該是一個能兼顧動力學與安全性的解決方案。但是尋找到能在高電壓工作、潤濕性好、安全性好的液態(tài)電解質(zhì)添加劑也并非易事,這本身就是液態(tài)鋰離子電池目前主要攻關的方向和瓶頸技術之一。


負極材料研究進展


金屬因其高容量和低電位的優(yōu)點成為全固態(tài)電池最主要的負極材料之一,然而金屬鋰在循環(huán)過程中會有鋰枝晶的產(chǎn)生,不但會使可供嵌/脫的鋰量減少,更嚴重的是會造成短路等安全問題。另外金屬Li十分活潑,容易與空氣中的氧氣和水分等發(fā)生反應,并且金屬鋰不能耐高溫,給電池的組裝和應用帶來困難。加入其它金屬與鋰組成合金是解決上述問題的主要方法之一,這些合金材料一般都具有高的理論容量,并且金屬鋰的活性因其它金屬的加入而降低,可以有效控制鋰枝晶的生成和電化學副反應的發(fā)生,從而促進了界面穩(wěn)定性。然而,鋰合金負極存在著一些明顯的缺陷,主要是在循環(huán)過程中電極體積變化大,嚴重時會導致電極粉化失效,循環(huán)性能大幅下降,同時,由于鋰仍然是電極活性物質(zhì),所以相應的安全隱患仍存在。目前,可以改善這些問題的方法主要包括合成新型合金材料、制備超細納米合金和復合合金體系(如活性/非活性、活性/活性、碳基復合以及多孔結構)等。


碳族的碳基、硅基和錫基材料是全固態(tài)電池另一類重要的負極材料。碳基以石墨類材料為典型代表,石墨碳具有適合于鋰離子嵌入和脫出的層狀結構,具有良好的電壓平臺,充放電效率在90%以上,然而理論容量較低(僅為372mA˙h/g)是這類材料最大的不足,并且目前實際應用已經(jīng)基本達到理論極限,無法滿足高能量密度的需求。


總結


以固態(tài)電解質(zhì)取代傳統(tǒng)有機電解液制備固態(tài)電池,可以從根本上解決鋰離子電池的安全問題。目前大量的工作集中在開發(fā)更高能量和功率密度的全固態(tài)鋰離子電池,在推進高安全、高儲能電池產(chǎn)業(yè)化進程中,關鍵材料(固態(tài)電解質(zhì)、正極和負極)的研發(fā)和制備是至關重要的一環(huán)。


固態(tài)電解質(zhì)發(fā)展出PEO及其衍生物體系聚合物電解質(zhì)、LiPON薄膜電解質(zhì)、氧化物和硫化物晶態(tài)電解質(zhì)以及硫化物玻璃電解質(zhì)等體系,離子電導率不斷被提升。目前而言,最有可能被應用到全固態(tài)鋰離子電池中的固態(tài)電解質(zhì)材料包括PEO基聚合物電解質(zhì)、NASICON型和石榴石型氧化物電解質(zhì)、硫化物電解質(zhì)。


在電極方面,除了傳統(tǒng)的過渡金屬氧化物正極、金屬鋰、石墨負極之外,一系列高性能正、負極材料也在不斷被開發(fā),包括高電壓氧化物正極、高容量硫化物正極、穩(wěn)定性良好的復合負極等。


電池關鍵材料的不斷優(yōu)化為大容量全固態(tài)鋰離子電池的產(chǎn)業(yè)化奠定了基礎,然而仍存在一些亟待解決的問題,從而成為未來的發(fā)展方向,雖然存在諸多問題,總體來說,全固態(tài)電池的發(fā)展前景是非常光明的,在未來替代現(xiàn)有鋰離子電池成為主流儲能電源也是大勢所趨。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術能力