XX00无码在线_日日夜夜 一二三_国人av偷拍盗摄摄像_久久人妻无码一区二区三区

低溫18650 3500
無(wú)磁低溫18650 2200
過(guò)針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

鋰離子電池負(fù)極材料標(biāo)準(zhǔn)

鉅大LARGE  |  點(diǎn)擊量:1389次  |  2019年07月12日  

鋰離子電池主要由正極、負(fù)極、電解液和隔膜等部分組成,其中負(fù)極材料的選擇會(huì)直接關(guān)系到電池的能量密度。金屬鋰具有最低的標(biāo)準(zhǔn)電極電勢(shì)(?3.04V,vs.SHE)和非常高的理論比容量(3860mA·h/g),是鋰二次電池負(fù)極材料的首選。然而,它在充放電過(guò)程中容易產(chǎn)生枝晶,形成“死鋰”,降低了電池效率,同時(shí)也會(huì)造成嚴(yán)重的安全隱患, 因此并未得到實(shí)際應(yīng)用。


直到1989年,Sony公司研究發(fā)現(xiàn)可以用石油焦替代金屬鋰,才真正的將鋰離子電池推向了商業(yè)化。在此后的發(fā)展過(guò)程中,石墨因其較低且平穩(wěn)的嵌鋰電位(0.01~0.2 V)、較高的理論比容量(372 mA·h/g)、廉價(jià)和環(huán)境友好等綜合優(yōu)勢(shì)占據(jù)了鋰離子電池負(fù)極材料的主要市場(chǎng)。此外,鈦酸鋰(Li4Ti5O12)雖然容量較低(175 mA·h/g),且嵌鋰電位較高(1.55V),但是它在充放電過(guò)程中結(jié)構(gòu)穩(wěn)定,是一種“零應(yīng)變材料”, 因此在動(dòng)力電池和大規(guī)模儲(chǔ)能中有一定的應(yīng)用,占據(jù)著少量的市場(chǎng)份額。隨著人們對(duì)鋰離子電池能量密度的追求越來(lái)越高,硅材料和金屬鋰將是負(fù)極材料未來(lái)的發(fā)展趨勢(shì)(圖2)。


我國(guó)在鋰離子電池負(fù)極材料產(chǎn)業(yè)化方面具有一定的優(yōu)勢(shì),國(guó)內(nèi)電池產(chǎn)業(yè)鏈從原料的開采、電極材料的生產(chǎn)、電池的制造和回收等環(huán)節(jié)比較齊整。此外,我國(guó)的石墨儲(chǔ)量豐富,僅次于土耳其和巴西。經(jīng)過(guò)近20年的發(fā)展,國(guó)產(chǎn)負(fù)極材料已走出國(guó)門,深圳貝特瑞新能源材料股份有限公司、上海杉杉科技有限公司和江西紫宸科技有限公司等廠商在負(fù)極材料的研發(fā)和生產(chǎn)等領(lǐng)域已處于世界先進(jìn)水平。


為了促進(jìn)鋰電行業(yè)的健康發(fā)展,我國(guó)從 2009年開始就陸續(xù)頒布了相關(guān)標(biāo)準(zhǔn),涉及原料、產(chǎn)品和檢驗(yàn)方法,提出了各項(xiàng)參數(shù)的具體指標(biāo),并給出了相應(yīng)的檢測(cè)方法,對(duì)負(fù)極材料的實(shí)際生產(chǎn)和應(yīng)用起到了指導(dǎo)性作用。目前實(shí)際應(yīng)用的負(fù)極材料種類比較集中(石墨和Li4Ti5O12),主要涉及的標(biāo)準(zhǔn)共有4項(xiàng)(表1)。不過(guò)正在制定或修訂的標(biāo)準(zhǔn)還有6 項(xiàng)(表2),說(shuō)明負(fù)極材料的種類有所增加,需要制定新的標(biāo)準(zhǔn)來(lái)規(guī)范其發(fā)展。本文將重點(diǎn)介紹4項(xiàng)已頒布標(biāo)準(zhǔn)中的主要內(nèi)容和要點(diǎn)。


1 國(guó)內(nèi)鋰電負(fù)極材料相關(guān)標(biāo)準(zhǔn)




表1列出了我國(guó)在近十幾年發(fā)布的鋰離子電池負(fù)極材料的相關(guān)標(biāo)準(zhǔn),其中國(guó)家標(biāo)準(zhǔn)3項(xiàng),行業(yè)標(biāo)準(zhǔn)1項(xiàng)。從類別上看,涉及的負(fù)極產(chǎn)品有3項(xiàng),測(cè)試方法1項(xiàng)。石墨是首先得到商業(yè)化應(yīng)用的負(fù)極材料,因此GB/T24533—2009《鋰離子電池石墨類負(fù)極材料》是第一項(xiàng)負(fù)極標(biāo)準(zhǔn)。隨后,少量的鈦酸鋰也進(jìn)入了市場(chǎng),相應(yīng)的行業(yè)標(biāo)準(zhǔn)YS/T825—2012《鈦酸鋰》和國(guó)家標(biāo)準(zhǔn)GB/T30836—2014《鋰離子電池用鈦酸鋰及其碳復(fù)合負(fù)極材料》也先后推出。


《鋰離子電池石墨類負(fù)極材料》將石墨分為天然石墨、中間相碳微球人造石墨、針狀焦人造石墨、石油焦人造石墨和復(fù)合石墨,每一類又根據(jù)其電化學(xué)性能(首次充放電比容量和首次庫(kù)侖效率)分為不同的級(jí)別,每一級(jí)別還根據(jù)材料的平均粒徑(D50)分為不同的品種。該標(biāo)準(zhǔn)對(duì)不同品種石墨的 各項(xiàng)理化性能參數(shù)均做出了要求,受限于篇幅,下文在敘述時(shí)只將石墨分為天然石墨、中間相碳微球人造石墨、針狀焦人造石墨、石油焦人造石墨和復(fù)合石墨,每一類指標(biāo)綜合了該類不同級(jí)別和不同品種石墨的所有參數(shù)。


表2列出了我國(guó)正在制定或修訂的鋰離子電池負(fù)極材料的相關(guān)標(biāo)準(zhǔn),除了《鋰離子電池石墨類負(fù)極材料》屬于修訂標(biāo)準(zhǔn),其余5項(xiàng)均為新制定的標(biāo)準(zhǔn)。正在新制定的《中間相炭微球》原先屬于石墨的一小類,現(xiàn)在被單列出來(lái),說(shuō)明該類石墨的重要性正在與日俱增。另外,還增加了一種新的石墨品種標(biāo)準(zhǔn)——《球形石墨》。除此之外,還有兩項(xiàng)關(guān)于軟碳的標(biāo)準(zhǔn)(《軟炭》和《油系針狀焦》)。軟碳是指在高溫下(<2500℃)能夠石墨化的碳材料,其碳層的有序程度低于石墨,但高于硬碳。軟碳材料具有對(duì)電解液的適應(yīng)性較強(qiáng)、耐過(guò)充和過(guò)放性能良好、容量比較高且循環(huán)性能好等優(yōu)點(diǎn),在儲(chǔ)能電池和電動(dòng)汽車領(lǐng)域具有一定的應(yīng)用,因此相應(yīng)的標(biāo)準(zhǔn)正在布局(表2)。


我國(guó)政府在《中國(guó)制造2025》中建議加快發(fā)展下一代鋰離子動(dòng)力電池,并提出了動(dòng)力電池單體能量密度中期達(dá)到300W·h/kg,遠(yuǎn)期達(dá)到400W·h/kg的目標(biāo)。針對(duì)這一要求,對(duì)于負(fù)極材料而言,石墨的實(shí)際容量已接近其理論極限,需要開發(fā)具有更高能量密度且兼顧其它指標(biāo)的新材料。其中,硅碳負(fù)極能夠?qū)⑻疾牧系膶?dǎo)電性和硅材料的高容量結(jié)合在一起,被認(rèn)為是下一代鋰離子電池負(fù)極材料,因此相應(yīng)的標(biāo)準(zhǔn)也正在起草(表2)。


2 鋰電池負(fù)極材料產(chǎn)品標(biāo)準(zhǔn)技術(shù)規(guī)范


2.1 鋰離子電池對(duì)負(fù)極材料的要求


負(fù)極材料作為鋰離子電池的核心部件,在應(yīng)用時(shí)通常需要滿足以下條件:


①嵌鋰電位低且平穩(wěn),以保證較高的輸出電壓;


②允許較多的鋰離子可逆脫嵌,比容量較高;


③在充放電過(guò)程中結(jié)構(gòu)相對(duì)穩(wěn)定,具有較長(zhǎng)的循環(huán)壽命;


④較高的電子電導(dǎo)率、離子電導(dǎo)率和低的電荷轉(zhuǎn)移電阻,以保證較小的電壓極化和良好的倍率性能;


⑤能夠與電解液形成穩(wěn)定的固體電解質(zhì)膜,保證較高的庫(kù)侖效率;


⑥ 制備工藝簡(jiǎn)單,易于產(chǎn)業(yè)化,價(jià)格便宜;


⑦ 環(huán)境友好,在材料的生產(chǎn)和實(shí)際使用過(guò)程中不會(huì)對(duì)環(huán)境造成嚴(yán)重污染;


⑧資源豐富等。


30多年來(lái),雖然不斷有新型鋰離子電池負(fù)極材料被報(bào)道出來(lái),但是真正能夠獲得商業(yè)化應(yīng)用的卻寥寥無(wú)幾,主要是因?yàn)楹苌儆胁牧夏芗骖櫼陨蠗l件。例如,雖然金屬氧化物、硫化物和氮化物等以轉(zhuǎn)化反應(yīng)為機(jī)理的材料具有較高的比容量,但是它們?cè)谇朵囘^(guò)程中平臺(tái)電位高、極化嚴(yán)重、體積變化大、難以形成穩(wěn)定的SEI且成本高等問(wèn)題使之不能真正獲得實(shí)際應(yīng)用。


石墨正是因?yàn)檩^好地兼顧了上述條件,才得到了廣泛的應(yīng)用。此外,雖然Li4Ti5O12容量低且嵌鋰電位高,但是它在充放電過(guò)程中結(jié)構(gòu)穩(wěn)定,允許高倍率充放電,因此在動(dòng)力電池和大規(guī)模儲(chǔ)能中也有一定的應(yīng)用。


負(fù)極材料的生產(chǎn)只是整個(gè)電池制作工藝過(guò)程中的一環(huán),標(biāo)準(zhǔn)的制定有助于電池企業(yè)對(duì)材料的優(yōu)劣做出評(píng)判。另外,材料在生產(chǎn)和運(yùn)輸過(guò)程中難免會(huì)受到人、機(jī)、料、環(huán)境和測(cè)試條件等因素的影響,只有將它們的各項(xiàng)理化性質(zhì)參數(shù)標(biāo)準(zhǔn)化,才能真正確保其可靠性。


一般而言,負(fù)極材料的關(guān)鍵性技術(shù)指標(biāo)有:晶體結(jié)構(gòu)、粒度分布、振實(shí)密度、比表面積、pH、水含量、主元素含量、雜質(zhì)元素含量、首次放電比容量和首次充放電效率等,下文將逐一展開說(shuō)明。


2.2 負(fù)極材料的晶體結(jié)構(gòu)


石墨主要有兩種晶體結(jié)構(gòu),一種是六方相 (a=b=0.2461nm,c=0.6708 nm,α=β=90°,γ=120°,P63/mmc空間群);另一種是菱方相(a=b=c,α=β=γ≠90°,R3m空間群)(表3)。在石墨晶體中,這兩種結(jié)構(gòu)共存,只是不同石墨材料中二者的比例有所差異,可通過(guò)X射線衍射測(cè)試來(lái)確定這一比例。


碳材料晶體結(jié)構(gòu)的有序程度和發(fā)生石墨化的難易程度可用石墨化度(G)來(lái)描述。G越大,碳材料越容易石墨化,同時(shí)晶體結(jié)構(gòu)的有序程度也越高。其中d002為碳材料XRD圖譜中(002)峰的晶面間距,0.3440代表完全未石墨化碳的層間距,0.3354代表理想石墨的層間距,單位均為nm。上式表明,碳材料的d002越小,其石墨化程度就越高,相應(yīng)晶格缺陷越少,電子的遷移阻力越小,電池的動(dòng)力學(xué)性能會(huì)得到提升,因而GB/T24533—2009《鋰離子電池石墨類負(fù)極材料》中對(duì)各類石墨的d002值均做出了明確規(guī)定(表3)。


Li4Ti5O12為立方尖晶石結(jié)構(gòu),屬于Fd-3m 空間群,具有三維鋰離子遷移通道(圖4),與其嵌鋰產(chǎn)物(Li7Ti5O12)的結(jié)構(gòu)相比,晶胞參數(shù)差異不大(0.836 nm→0.837 nm),被稱為“零應(yīng)變材料”,因而具有非常優(yōu)異的循環(huán)穩(wěn)定性。


Li4Ti5O12通常是以TiO2和Li2CO3為原料經(jīng)高溫?zé)Y(jié)制備的,因此產(chǎn)品中有可能會(huì)殘留少量的TiO2,影響了材料的電化學(xué)性能。為此,GB/T30836—2014《鋰離子電池用鈦酸鋰及其碳復(fù)合負(fù)極材料》中給出了 Li4Ti5O12產(chǎn)品中TiO2殘留量的上限值及檢測(cè)方法。具體過(guò)程為:首先,通過(guò)XRD測(cè)得樣品的衍射圖譜,應(yīng)符合JCPDS(49-0207)的規(guī)定;其次,從譜圖中讀出Li4Ti5O12的(111)晶面衍射峰、銳鈦礦型TiO2(101)晶面衍射峰、金紅石型 TiO2(110)晶面衍射峰的強(qiáng)度;最后計(jì)算銳鈦礦型TiO2峰強(qiáng)比I101/I111和金紅石型TiO2峰強(qiáng)比 I110/I111,對(duì)照標(biāo)準(zhǔn)中的要求即可做出判斷(表3)。


2.3 負(fù)極材料的粒度分布


負(fù)極材料的粒度分布會(huì)直接影響電池的制漿工藝以及體積能量密度。在相同的體積填充份數(shù)情況下,材料的粒徑越大,粒度分布越寬,漿料的黏度就越小(圖5),這有利于提高固含量,減小涂布難度。另外,材料的粒度分布較寬時(shí),體系中的小顆粒能夠填充在大顆粒的空隙中,有助于增加極片的壓實(shí)密度,提高電池的體積能量密度。


材料的粒度和粒度分布通??捎杉す庋苌淞6确治鰞x和納米顆粒分析儀測(cè)出。激光衍射粒度分析儀主要是基于靜態(tài)光散射理論工作,即不同粒徑的顆粒對(duì)入射光的散射角以及強(qiáng)度不同,主要用于測(cè)量微米級(jí)別的顆粒體系。納米顆粒分析儀主要是基于動(dòng)態(tài)光散射理論工作的,即納米顆粒更加嚴(yán)重的 布朗運(yùn)動(dòng)不僅影響了散射光的強(qiáng)度,還影響了它的頻率,由此來(lái)測(cè)定納米粒子的粒度分布。


材料粒度分布的特征參數(shù)主要有D50、D10、D90和Dmax,其中D50表示粒度累積分布曲線中累積量為50%時(shí)對(duì)應(yīng)的粒度值,可視為材料的平均粒徑。另外,材料粒度分布的寬窄可由K90表示,K90=(D90-D10)/D50,K90越大,分布越寬。


負(fù)極材料的粒度主要是由其制備方法決定的。例如,中間相碳微球(CMB)的合成方法為液相烴類在高溫高壓下的熱分解和熱縮聚反應(yīng),可通過(guò)控制原料的種類、反應(yīng)時(shí)間、溫度和壓力等來(lái)調(diào)控CMB的粒徑。石墨標(biāo)準(zhǔn)中對(duì)其粒徑參數(shù)的要求分別為:D50(約20μm)、Dmax(≤70μm)和D10(約10μm),而鈦酸鋰標(biāo)準(zhǔn)中要求的D50明顯小于石墨 (≤10μm,表4)。


2.4 負(fù)極材料的密度


粉體材料一般都是有孔的,有的與顆粒外表面相通,稱為開孔或半開孔(一端相通),有的完全不與外表面相通,稱為閉孔。在計(jì)算材料密度時(shí),根據(jù)是否將這些孔體積計(jì)入,可分為真密度、有效密度和表觀密度,而表觀密度又分為壓實(shí)密度和振實(shí)密度。


真密度代表的是粉體材料的理論密度,計(jì)算時(shí)采用的體積值為除去開孔和閉孔的顆粒體積。而有效密度指的是粉體材料可以有效利用的密度值,所使用的體積為包括閉孔在內(nèi)的顆粒體積。有效體積的測(cè)試方法為:將粉體材料置于測(cè)量容器中,加入液體介質(zhì),并且讓液體充分浸潤(rùn)到顆粒的開孔中,用測(cè)量的體積減去液體介質(zhì)體積即得有效體積。


在實(shí)際應(yīng)用中,生產(chǎn)廠家更為關(guān)心的是材料的表觀密度,它主要包括振實(shí)密度和壓實(shí)密度。振實(shí)密度的測(cè)試原理為:將一定量的粉末填裝在振實(shí)密度測(cè)試儀中,通過(guò)振動(dòng)裝置不斷振動(dòng)和旋轉(zhuǎn),直至樣品的體積不再減小,最后用樣品的質(zhì)量除以振實(shí)后的體積即得振實(shí)密度。


而壓實(shí)密度的測(cè)試原理為:在外力的擠壓過(guò)程中,隨著粉末的移動(dòng)和變形,較大的空隙被填充,顆粒間的接觸面積增大,從而形成具有一定密度和強(qiáng)度的壓胚,壓胚的體積即為壓實(shí)體積。一般地,真密度>有效密度>壓實(shí)密度>振實(shí)密度。


負(fù)極材料的密度會(huì)直接影響到電池的體積能量密度。對(duì)于同一種材料,其壓實(shí)密度越大,體積能量密度也越高,因此標(biāo)準(zhǔn)中對(duì)各項(xiàng)密度的下限值均做出了要求(表5)。其中,不同石墨材料的真密度范圍相同,均為 2.20~2.26g/cm3 ,這是因?yàn)樗鼈儚谋举|(zhì)上講都是碳材料,只是微結(jié)構(gòu)不同而已。另外, 由于Li4Ti5O12的初始電導(dǎo)率較低,通常需要通過(guò)碳包覆來(lái)提升電池的倍率性能,但與此同時(shí),相應(yīng)的振實(shí)密度有所下降(表5)。




2.5 負(fù)極材料的比表面積


表面積分為外表面積和內(nèi)表面積,材料的比表面積是指單位質(zhì)量的總面積。理想的非孔材料只有外表面積,比表面積通常較小,而有孔和多孔材料具有較大的內(nèi)表面積,比表面積較高。另外,通常將粉體材料的孔徑分為三類,小于2 nm的為微孔、2~50nm之間的為介孔、大于50nm的為大孔。此外,材料的比表面積與其粒徑是息息相關(guān)的,粒徑越小,比表面積越大。


材料的孔徑和比表面積一般是通過(guò)氮?dú)馕摳綄?shí)驗(yàn)測(cè)定的。其基本原理為:當(dāng)氣體分子與粉體材料發(fā)生碰撞時(shí),會(huì)在材料表面停留一段時(shí)間,此現(xiàn)象為吸附,恒溫下的吸附量取決于粉體和氣體的性質(zhì)以及吸附發(fā)生時(shí)的壓力,根據(jù)吸附量即可推算出材料的比表面積、孔徑分布和孔容等。另外,粉體對(duì)氣體的吸附量會(huì)隨著溫度的降低而升高,因此吸附實(shí)驗(yàn)一般是在低溫下(使用液氮)進(jìn)行的,以提高材料對(duì)氣體的吸附能力。


負(fù)極材料的比表面積對(duì)電池的動(dòng)力學(xué)性能和固體電解質(zhì)膜(SEI)的形成有很大影響。例如,納米材料一般具有較高比表面積,能夠縮短鋰離子的傳輸路徑、減小面電流密度、提升電池的動(dòng)力學(xué)性能,因而得到了廣泛的研究。但往往這類材料卻無(wú)法得到實(shí)際應(yīng)用,主要是因?yàn)榇蟊缺砻娣e會(huì)加劇電池在 首次循環(huán)時(shí)電解液的分解,造成較低的首次庫(kù)侖效率。因此,負(fù)極材料標(biāo)準(zhǔn)對(duì)石墨和鈦酸鋰的比表面積設(shè)定了上限值,例如石墨的比表面積需要被控制在6.5m2/g以下,而Li4Ti5O12@C也要小于18m2 /g(表6)。


2.6 負(fù)極材料對(duì)pH和水分的要求


粉體材料中含有的微量水分可由卡爾·費(fèi)休庫(kù)侖滴定儀測(cè)定。其基本原理為:試樣中的水可與碘和二氧化硫在有機(jī)堿和甲醇的條件下發(fā)生反應(yīng)H2O+I2+SO2+CH3OH+3RN→[RHN]SO4CH3+2[RHN]I,其中的碘是通過(guò)電化學(xué)方法氧化電解槽而產(chǎn)生的(2I?—→I2+2e?),產(chǎn)生碘的量與通過(guò)電解池的電量成正比,因此通過(guò)記錄電解池所消耗的電 量就可求得水含量。


負(fù)極材料的pH和水分對(duì)材料的穩(wěn)定性和制漿工藝有重要影響。對(duì)于石墨而言,其pH通常在中性左右(4~9),而Li4Ti5O12則呈堿性(9.5~11.5),具有一定的殘堿度(表7)。這主要是因?yàn)樵谥苽銵i4Ti5O12時(shí),為保證反應(yīng)的充分進(jìn)行,一般都會(huì)讓鋰源過(guò)量,而它們主要以Li2CO3或者LiOH的形式存在,使最終產(chǎn)品呈堿性。當(dāng)殘堿量過(guò)高時(shí),材料的穩(wěn)定性變差,容易與空氣中的水和二氧化碳等反應(yīng),會(huì)直接影響材料的電化學(xué)性能。另外,由于石墨類負(fù)極漿料目前主要為水性體系,因此它對(duì)水分的要求(≤0.2%)并沒(méi)有像正極材料(漿料通常為油性體系,≤0.05%)那樣苛刻,這對(duì)降低電池的生產(chǎn)成本和簡(jiǎn)化工藝具有一定意義。


2.7 負(fù)極材料的主元素含量


石墨負(fù)極雖然具有較高的容量和低且平穩(wěn)的嵌鋰電位,但是它對(duì)電解液的組分十分敏感,易剝離,耐過(guò)充能力差。因此,商業(yè)化使用的石墨都是改性石墨,改性方法主要包括表面氧化和表面包覆等,而表面處理也會(huì)使石墨中殘存部分雜質(zhì)。石墨主要由固定碳、灰分和揮發(fā)分三部分組成,固定碳是真 正起電化學(xué)活性的組分,標(biāo)準(zhǔn)中要求固定碳的含量需要大于99.5%(表8),可采用間接定碳法來(lái)確定固定碳的含量。


對(duì)于Li4Ti5O12而言,鋰的理論含量為6%,在實(shí)際產(chǎn)品中允許的偏差為5%~7%(表8)。一般元素的含量可由電感耦合等離子體原子發(fā)射光譜測(cè)出,其基本原理為:工作氣體(Ar)在高頻電流的作用下產(chǎn)生等離子體,樣品與高溫等離子體相互作用發(fā)射光子,它的波長(zhǎng)與元素種類有關(guān),由激發(fā)波長(zhǎng)即可判斷出元素種類。此外,Li4Ti5O12的電導(dǎo)率較低,通常會(huì)采用碳包覆的策略來(lái)提升電池的反應(yīng)動(dòng)力學(xué)。然而,包覆的碳層不宜過(guò)厚,否則不僅會(huì)影響鋰離子的遷移速率,還會(huì)降低材料的振實(shí)密度,因此標(biāo)準(zhǔn)中將碳含量限制在了10%以下(表8)。


2.8 負(fù)極材料的雜質(zhì)元素含量


負(fù)極材料中的雜質(zhì)元素是指除了主元素以及包覆和摻雜引入的元素外的其它成分。雜質(zhì)元素一般是通過(guò)原料或者是在生產(chǎn)過(guò)程中被引入的,它們會(huì)嚴(yán)重影響電池的電化學(xué)性能,因此需要從源頭加以控制。例如,某些金屬雜質(zhì)成分不僅會(huì)降低電極中活性材料的比例,還會(huì)催化電極材料與電解液的副 反應(yīng),甚至刺穿隔膜,造成安全隱患。另外,由于人造石墨大多是通過(guò)石油裂解制備的,因此這類產(chǎn)品中往往還殘存少量的有機(jī)產(chǎn)物,如硫、丙酮、異丙醇、甲苯、乙苯、二甲苯、苯、乙醇、多溴聯(lián)苯和多溴聯(lián)苯醚等(表9)。


歐盟的RoHS標(biāo)準(zhǔn)即《電子和電器設(shè)備中限用某些物質(zhì)的指令》中對(duì)各類有害物質(zhì)做出了限定,我國(guó)制定的標(biāo)準(zhǔn)也參考了這一規(guī)定。例如,部分負(fù)極原料中含有鎘、鉛、汞、六價(jià)鉻及其化合物等限用元素,它們對(duì)動(dòng)物、植物和環(huán)境有害,因此在標(biāo)準(zhǔn)中對(duì)此類物質(zhì)有嚴(yán)格的限制(石墨≤20ppm,鈦酸鋰≤100ppm,1ppm=10-6)(表10)。另外,負(fù)極材料的生產(chǎn)設(shè)備大都為不銹鋼和鍍鋅鋼板等,產(chǎn)品中往往都含有鐵、鉻、鎳和鋅等磁性雜質(zhì),它們可以通過(guò)磁選的方式被收集,因此標(biāo)準(zhǔn)中對(duì)此類雜質(zhì)的含量要求較嚴(yán)格(石墨≤1.5 ppm,鈦酸鋰≤20 ppm)。


2.9 負(fù)極材料的首次可逆比容量和首次效率


負(fù)極材料的首次可逆比容量指的是首周脫鋰容量,而首次效率指的是首周脫鋰容量與嵌鋰容量的比值,它們可以在很大程度上反映電極材料的電化學(xué)性能。石墨負(fù)極在首周嵌鋰的過(guò)程中電解液會(huì)發(fā)生分解,生成SEI膜,它允許鋰離子通過(guò),阻礙電子通過(guò),可以防止電解液的進(jìn)一步消耗,因此拓寬了電解液的電化學(xué)窗口。


然而,SEI膜的生成也 會(huì)造成較大的不可逆容量,降低了首次庫(kù)侖效率,特別是對(duì)于全電池而言,較低的首次庫(kù)侖效率意味著有限鋰源的損失。相比之下,Li4Ti5O12的嵌鋰電位(約1.55V)較高,不會(huì)在首周生成SEI膜,因此首次效率比石墨高(≥90%,表11),高質(zhì)量Li4Ti5O12 的首次效率可以達(dá)到98%以上。另外,電池的首周可逆比容量可以在一定程度上反映材料在后續(xù)循環(huán)中的穩(wěn)定容量,也具有重要的實(shí)際意義。


3 對(duì)今后標(biāo)準(zhǔn)制定工作的建議


標(biāo)準(zhǔn)的制定有助于服務(wù)企業(yè),滿足市場(chǎng)需求,實(shí)用化是其基本原則。然而,目前鋰離子電池電極材料產(chǎn)品更新?lián)Q代較快,給標(biāo)準(zhǔn)制定工作帶來(lái)了不小的挑戰(zhàn)。以目前實(shí)施的《鋰離子電池石墨類負(fù)極材料》為例,標(biāo)準(zhǔn)中涉及了天然石墨、中間相碳微球人造石墨、針狀焦人造石墨、石油焦人造石墨和復(fù)合石墨5大類,每一類還根據(jù)其電化學(xué)性能和平均粒徑分為不同的品種,然而從客戶角度出發(fā),這些標(biāo)準(zhǔn)并沒(méi)有得到很好的應(yīng)用。


另外,這一標(biāo)準(zhǔn)中包含的內(nèi)容太多,針對(duì)性較弱,建議可以設(shè)立關(guān)于天然石墨、中間相碳微球人造石墨、針狀焦人造石墨、石油焦人造石墨和復(fù)合石墨的獨(dú)立標(biāo)準(zhǔn)。此外,標(biāo)準(zhǔn)中對(duì)負(fù)極材料的倍率性能和循環(huán)壽命均未做明確的規(guī)定,而這兩項(xiàng)指標(biāo)也是衡量電極材料能否得到實(shí)際應(yīng)用的關(guān)鍵參數(shù),因此建議在后續(xù)的標(biāo)準(zhǔn)中增加這兩項(xiàng)指標(biāo)。


原材料和合適的檢測(cè)方法是關(guān)乎電池一致性的重要因素。在鋰離子電池正極材料方面,有關(guān)于原材料(例如碳酸鋰、氫氧化鋰和四氧化三鈷等)和檢測(cè)方法(如鈷酸鋰電化學(xué)性能測(cè)試——首次放電比容量和首次充放電效率測(cè)試方法)的獨(dú)立標(biāo)準(zhǔn)。然而,在鋰離子電池負(fù)極方面,還幾乎沒(méi)有涉及此類標(biāo)準(zhǔn)。同時(shí),由于不同負(fù)極材料的性能差別較大,需要在檢測(cè)方法上具有針對(duì)性。因此建議在今后制定不同鋰離子電池負(fù)極材料原材料和不同負(fù)極材料檢測(cè)方法的獨(dú)立標(biāo)準(zhǔn)。


對(duì)于硅負(fù)極,目前主要有兩條技術(shù)路線,即納米硅碳和氧化亞硅,它們的基本性能目前差別較大。納米硅碳負(fù)極的首次庫(kù)侖效率和比容量較高,但體積膨脹大,循環(huán)壽命相對(duì)較低;而氧化亞硅的體積膨脹相對(duì)較小,循環(huán)壽命更好,但首效較低。具體發(fā)展哪一條路線,還有賴于市場(chǎng)和客戶對(duì)產(chǎn)品的需求。因此,建議對(duì)于硅負(fù)極標(biāo)準(zhǔn)的制定最好能夠分為納米硅碳和氧化亞硅兩個(gè)不同的體系,使得標(biāo)準(zhǔn)中的參數(shù)更具有針對(duì)性和實(shí)用性。


另外,硬碳也是一種鋰離子電池常規(guī)負(fù)極材料,目前應(yīng)用領(lǐng)域較窄,主要是摻入石墨負(fù)極來(lái)提高負(fù)極材料的倍率性能。然而,在未來(lái)硬碳的市場(chǎng)份額可能會(huì)隨著鋰離子電池應(yīng)用的多樣化而逐步增大,因此在合適的時(shí)機(jī)可以對(duì)其制定標(biāo)準(zhǔn)。此外,鋰硫電池和鋰空電池屬于新型電池體系,具有很高的能量密度,因此金屬鋰也是未來(lái)負(fù)極材料的發(fā)展方向。不過(guò),鋰金屬電池的發(fā)展目前還屬于起步階段,短期不會(huì)得到廣泛的應(yīng)用,因此關(guān)于金屬鋰負(fù)極標(biāo)準(zhǔn)的制定,目前還為時(shí)尚早。


結(jié) 語(yǔ)


綜上所述,負(fù)極材料標(biāo)準(zhǔn)主要是從晶體結(jié)構(gòu),粒度分布、振實(shí)密度和比表面積,pH和水含量,主元素含量和雜質(zhì)元素含量,首次可逆比容量和首次充放電效率5個(gè)方面對(duì)材料做出了要求,以期達(dá)到使電池具有高能量密度、高功率密度、長(zhǎng)循環(huán)壽命、高能量效率、低使用成本和環(huán)境友好的目的(圖6)。這些標(biāo)準(zhǔn)規(guī)范了鋰離子電池負(fù)極材料的各項(xiàng)指標(biāo)參數(shù),可用于指導(dǎo)其實(shí)際生產(chǎn)和應(yīng)用。


近年來(lái),在國(guó)家的大力支持下,鋰離子電池行業(yè)發(fā)展勢(shì)頭良好,負(fù)極材料迎來(lái)了前所未有的機(jī)遇。由于新能源行業(yè)對(duì)鋰離子電池能量密度的要求越來(lái)越高,石墨和鈦酸鋰材料的性能正在不斷地優(yōu)化。與此同時(shí),下一代鋰離子電池負(fù)極材料——硅,也正在逐步開始商業(yè)化。因此,需要對(duì)原有的負(fù)極標(biāo)準(zhǔn)進(jìn)行升級(jí),甚至是編制新的標(biāo)準(zhǔn),從而促進(jìn)我國(guó)鋰離子電池行業(yè)的健康和可持續(xù)發(fā)展。


鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力