鉅大LARGE | 點擊量:1041次 | 2020年01月10日
動態(tài)電源管理 實現(xiàn)高效快速充電模式
隨著對于新興便攜式設備(例如:平板電腦和智能電話等)需求的快速增長,在如何提高電池供電型系統(tǒng)性能方面出現(xiàn)了許多新的挑戰(zhàn)。電池管理系統(tǒng)必須能夠智能地支持不同類型的適配器和電池化學成份,并且必須擁有高效的快速充電能力。與此同時,提供良好的用戶體驗也非常重要,例如:系統(tǒng)瞬間開啟、更長的電池使用時間以及快速充電等。本文將討論如何通過動態(tài)電源管理(DPM)實現(xiàn)快速電池充電和提高電池充電性能。DPM幫助避免系統(tǒng)崩潰,并可最大化適配器的可用功率。它可以基于輸入電流或者輸入電壓,或者與電池補充供電模式一起組合使用。本文還會介紹一些延遲電池使用時間的重要設計考慮。
鋰離子(Li-Ion)電池對于便攜式設備不斷增長的電力需求來說是一種理想選擇,因為它擁有非常高的能量密度。今天,一部10英寸屏幕的平板電腦,通常會使用一塊6到10Ah容量的電池組來提供更長的工作時間。利用高容量電池,便攜式設備便可擁有快速、高效的充電能力,從而實現(xiàn)良好的用戶體驗。另外,平板電腦還要求具備其它一些功能,例如:優(yōu)異的散散熱性能和瞬間開機的能力(即使在電池被深度放電的情況下)。這些要求帶來了許多技術挑戰(zhàn)。一個挑戰(zhàn)是,如何在不使電源崩潰的同時,最大化電源的可用功率,以高效和快速地對電池充電。另一個挑戰(zhàn)是,如何在系統(tǒng)工作的同時對深度放電的電池進行充電。最后一個挑戰(zhàn)是,如何延遲電池使用時間和提高散熱性能。
動態(tài)電源管理(DPM)
如何最大化可用功率,對電池進行快速、高效的充電?所有電源都其輸出電流或者功率限制。例如,高速USB(USB2.0)端口的最大輸出電流限定在500mA,而超高速USB(USB3.0)端口的最大輸出電流為900mA。如果系統(tǒng)的功率需求超出電源能夠提供的功率,則電源會崩潰。電池充電時,如何在使功率輸出最大化的同時防止電源崩潰呢?下面,我們介紹3種控制方法:基于輸入電流的DPM,基于輸入電壓的DPM,以及與電池補充供電模式一起使用的DPM。
基于輸入電流的DPM
圖1顯示了使用DPM控制的高效開關模式充電器。MOSFETQ2及Q3與電感器L組成了一個同步開關降壓型電池充電器。使用一個降壓轉換器,可確保有效轉換適配器的輸入功率,以實現(xiàn)更快速的電池充電。MOSFETQ1用作一個電池反向阻塞MOSFET,用于防止電池到輸入的漏電流通過MOSFETQ2的體二極管。另外,它還起到一個輸入電流檢測器的作用,以監(jiān)測適配器電流。
MOSFETQ4用于主動監(jiān)測和控制電池充電電流,以實現(xiàn)DPM功能。當輸入功率足以支持系統(tǒng)負載和電池充電時,使用理想的充電電流值ICHG來對電池充電。如果系統(tǒng)負載(ISYS)突然增加且其總適配器電流達到限流設置(IREF),則輸入電流調(diào)節(jié)環(huán)路主動調(diào)節(jié),并使輸入電流保持在預定義IREF輸入基準電流上。給予更高的優(yōu)先權為系統(tǒng)供電,以讓其達到最高性能,并同時降低充電電流,這樣便可實現(xiàn)上述目標。因此,我們始終可以在輸入功率電源不崩潰的同時最大化輸入功率,并且讓可用功率動態(tài)地在系統(tǒng)和電池充電之間共用。
基于輸入電壓的DPM
如果一個第三方電源插入系統(tǒng),而系統(tǒng)卻無法識別其電池限制,則難以根據(jù)輸入電流限制來使用DPM。這種情況下,我們可以使用基于輸入電壓的DPM(圖2)。電阻分壓器R1和R2用于檢測輸入電壓,然后饋給輸入電壓調(diào)節(jié)環(huán)路的誤差放大器。同樣,如果系統(tǒng)負載增加,致使輸入電流超出適配器的電流限制,則適配器電壓開始下降,并最終達到預設的最小輸入電壓。輸入電壓調(diào)節(jié)環(huán)路被激活,以讓輸入電壓維持在預設水平。通過自動降低充電電流以便讓來自輸入功率電源的總電流達到其最大值(電源不崩潰),可以完成這項工作。因此,系統(tǒng)可以追蹤適配器的最大輸入電流。設計輸入電壓調(diào)節(jié)的目的是,讓電壓保持足夠高,以便對電池完全充電。例如,可把電壓設置為4.35V左右,以對一塊單節(jié)鋰離子電池組完全充電。