XX00无码在线_日日夜夜 一二三_国人av偷拍盗摄摄像_久久人妻无码一区二区三区

低溫18650 3500
無磁低溫18650 2200
過針刺低溫18650 2200
低溫磷酸3.2V 20Ah
21年專注鋰電池定制

電池故障預(yù)警分析

鉅大LARGE  |  點擊量:2718次  |  2018年09月29日  

互比較內(nèi)阻增量是電池故障預(yù)警工程實用化的核心概念


電池故障預(yù)警的最佳方案是選擇帶有損傷留痕意義的電池內(nèi)阻作為預(yù)警參數(shù),這就需要對內(nèi)阻的變化,即自比較內(nèi)阻增量進行定量計算,然而這一方案存在以下現(xiàn)實困難:


1)影響電池內(nèi)阻精確值的因素很多,特別是內(nèi)阻在線運行下的無規(guī)則自然波動,使電池未損傷的應(yīng)有內(nèi)阻值無法確定,也造成計算自比較內(nèi)阻增量缺少基準值。


2)如前所述,電池出廠時無法精確標定其初始內(nèi)阻,從而使后續(xù)測量和計算失去原始依據(jù);


解決以上困難的唯一出路是,用電池組的互比較內(nèi)阻增量替代自比較內(nèi)阻增量。實現(xiàn)這種替代必須具備以下前提條件。

過針刺 低溫防爆18650 2200mah
符合Exic IIB T4 Gc防爆標準

充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%

(1)因電池差異性而導(dǎo)致的電池損傷,包括惡性循環(huán)所致的損傷疊加總是集中在極少數(shù)電池上。這樣大多數(shù)電池的內(nèi)阻值變化都將遵循未損傷的電池老化規(guī)律。把這種未損傷電池內(nèi)阻的基礎(chǔ)值提取出來,可以作為損傷電池的當前基準內(nèi)阻,則各電池當前實際內(nèi)阻值與當前基準內(nèi)阻值之差即可定義為互比較內(nèi)阻增量。


只要電池組的安裝與運行符合以上前提條件(一般實際電池組均能符合),則這種替代就具有足夠的合理性,而替代的重要現(xiàn)實目標是使實用儀表的研發(fā)具備技術(shù)可行性。


(2)上述電池組在同一工作條件下運行,包括同一電流和同一溫度,其內(nèi)阻的在線自然波動應(yīng)具有相同的歷史過程,即內(nèi)阻值也應(yīng)具有較小的運行分布誤差。


(3)電池組采用同一廠家,同一規(guī)格的電池,并按一定的規(guī)范組裝而成,其中包括組裝前的一致性測試和組裝后的均衡充電規(guī)程,其內(nèi)阻值應(yīng)有較小的初始分布誤差。


損傷留痕

無人船智能鋰電池
IP67防水,充放電分口 安全可靠

標稱電壓:28.8V
標稱容量:34.3Ah
電池尺寸:(92.75±0.5)* (211±0.3)* (281±0.3)mm
應(yīng)用領(lǐng)域:勘探測繪、無人設(shè)備

損傷留痕是電池損傷理論解決工程應(yīng)用的一個重要新概念。電池受損所致的各種物理量變化中可重復(fù)測量,可相互比較的是顯性損傷留痕,無法直接重復(fù)測量的是隱形損傷留痕。顯然,顯性損傷留痕的特征與本文引言中所述的最佳預(yù)警參數(shù)的3個特征完全相同,因此,找到了顯性損傷留痕也就等于找到了最佳預(yù)警參數(shù)。


2.1技術(shù)難題


內(nèi)阻是一個特定的物理量,有許多現(xiàn)成的測量方法可用,在已有知識中,4線交流法能有效克服導(dǎo)線電阻與接觸電阻的不利影響,是測量微小電阻最理想的一種物理方法,但是要把4線交流法發(fā)展成為一種實用的電池故障預(yù)警技術(shù),還面臨許多技術(shù)上的挑戰(zhàn)。因技術(shù)細節(jié)非本文重點,在此僅作簡單評介。


2.1.1抗在線干擾問題


在線測量內(nèi)阻,即在電池組與電源設(shè)備共同工作且處于值班狀態(tài)下測量內(nèi)阻,是電池故障預(yù)警技術(shù)的一項基本要求。大容量電池的內(nèi)阻很小,基本上處于4線交流法測量的下限,內(nèi)阻增量比被測內(nèi)阻本身還要小將近一個數(shù)量級,電源設(shè)備運行中的工頻紋波,開關(guān)噪聲,特別是強大的共地串擾,將造成很大的測量值跳動,任何抗干擾措施都只能使干擾的不利影響減小,而不能使之消失。當干擾的不確定跳動大于內(nèi)阻增量時,測量數(shù)據(jù)將失去分析價值。


2.3.2接觸電阻的不利影響


接觸電阻無處不在,其數(shù)值可能是電池內(nèi)阻的若干倍,由于測量儀器最終還要依靠測量線連接到電池極柱上,電池極柱形形色色,外匯流條與緊固螺栓各異,這樣測量連接裝置將變得與測量儀器本身一樣重要,在某種意義上甚至成為電池故障預(yù)警技術(shù)工程實用化的成敗關(guān)鍵。


2.1.3毫歐姆、微歐姆的定標問題


測量儀表需要正確地校準和標定才能保證合理的技術(shù)指標,缺少高精度毫歐姆,微歐姆電阻基準是定標困難之一;儀表測量原理的不同與測量連接的差異帶來很大的不確定量是定標困難之二。以上困難不僅造成不同儀表的測量數(shù)據(jù)之間缺少比對價值,還進一步造成出廠時的內(nèi)阻值根本無法精確標定。好在電池故障預(yù)警更需要的是相對精度,這一特點大大降低了控制絕對精度的技術(shù)難度,但工程實踐表明,單體現(xiàn)場可標定,可校準依然是自動巡測型儀表工程化的一個不可或缺的基本要求。


2.2傳統(tǒng)誤區(qū)


在選擇內(nèi)阻作為預(yù)警參數(shù)上,囿于傳統(tǒng)思維或老化理論,存在著2個誤區(qū)。


2.2.1誤區(qū)1——易于與作為內(nèi)部耗能參數(shù)的內(nèi)阻混為一談


作為內(nèi)部耗能參數(shù)的內(nèi)阻與作為損傷留痕的內(nèi)阻是兩個完全不同的概念。


內(nèi)阻作為電池內(nèi)部耗能參數(shù),在電池供出電流時,將在電池外部造成端電壓的下降,并在內(nèi)部產(chǎn)生熱量,大多數(shù)專業(yè)人士都有這樣的深刻印象:除了內(nèi)阻增大到影響電池供能外,大部分情況下電池極小的內(nèi)阻對供能的影響微不足道。定量來說一個1mΩ內(nèi)阻的電池供出10A電流,僅造成10mV端壓降與0.1W內(nèi)部發(fā)熱,即使上例內(nèi)阻從1mΩ增加到2mΩ,其內(nèi)部損耗也只造成20mV的端壓降和0.2W的內(nèi)部發(fā)熱,依然停留在可以忽略不計的水平,從這個角度出發(fā)無疑會對選擇內(nèi)阻作為預(yù)警參數(shù)打上問號。


但是從電池損傷理論的角度來看,電池內(nèi)阻從1mΩ增大到2mΩ可是一個大事件,足以判定電池嚴重損傷應(yīng)該報廢,報廢的理由不是因為內(nèi)阻損耗影響了電池供能,而是間接說明該電池已成為電池組中的高?!皵嗔腰c”。


2.2.2誤區(qū)2——試圖由內(nèi)阻計算容量


內(nèi)阻確實與容量存在高度相關(guān)性,但多項研究認定,由于工藝、材料、溫度等各種因素,內(nèi)阻與容量之間不存在確定的數(shù)學(xué)關(guān)系。更何況僅內(nèi)部匯流條腐蝕導(dǎo)致物理內(nèi)阻增加且肯定與容量無關(guān)一例,已成為計算容量的判決性反證??梢哉f,這種對容量的依賴只不過是源自老化理論的一種習慣性聯(lián)想。


而從損傷理論來看,內(nèi)阻與損傷的直接相關(guān)性已足夠預(yù)警檢測使用,對計算容量的追求實在是多此一舉。


2.3關(guān)于微損傷后主要物理量變化特點的討論


2.3.2溫度變化


理論與經(jīng)驗都表明,過充過放中的非正常電流將引起電池短時發(fā)熱,但局部過充過放有終點時間,此后電池溫度將會趨于正常。因此,盡管溫度升高一定對應(yīng)于電池不正常,但熱量會散發(fā),溫度不能永久保留不變。


2.3.1容量變化


電池受損后必然造成容量永久性下降,這已成為當前流行的思維模式,但是,容量是一個難以測量的隱性物理量,除了直接放電校核方法外,至今并未找到一種迅速可靠的間接測量方法。因此,容量下降是電池受損的結(jié)果,但容量測量極不方便,故不具備作為預(yù)警參數(shù)的實用價值。


2.1.3端壓變化


開路狀態(tài)下的端電壓等于化學(xué)電動勢,而化學(xué)電動勢是一種不變的自然常量,測量開路電壓無法判別電池好壞已屬常識。而閉路電壓與電池主電流有關(guān)。在同一主電流下監(jiān)測到的閉路電壓異常,實際上還是屬于內(nèi)阻異常,監(jiān)測端壓僅在主電流很大時有效,在大部時間里的浮充電壓下主電流很小,且不確定。故這種方法基本無效。因此,單體端電壓監(jiān)測僅在大電流下有效,浮充下基本無效,根本原因在于開路電壓為化學(xué)電動勢,屬恒定不變的自然常量,完全與損傷無關(guān)。


2.3.4內(nèi)阻變化


這是當前最為活躍的研究方向,說明內(nèi)阻在電池故障預(yù)警技術(shù)中的地位正在日益受到重視。已進行了大量研究,少量產(chǎn)品已經(jīng)問世,也積累了相當多的數(shù)據(jù),在此基礎(chǔ)上總結(jié)內(nèi)阻與電池損傷的關(guān)系,有以下2個顯著特點:


1)電池受損后內(nèi)阻永久性增大,相對其他物理量變化更加易于重復(fù)測量;


2)重復(fù)受損的內(nèi)阻增量可重復(fù)疊加,因而具有可互相比較性。


因此,選擇內(nèi)阻作為預(yù)警參數(shù)的優(yōu)點勿庸置疑,但一些傳統(tǒng)誤區(qū)增加了推廣難度,而研發(fā)在線強干擾下能測量微小內(nèi)阻和更微小的內(nèi)阻增量的高精度儀表也存在許多技術(shù)上的困難。

鉅大鋰電,22年專注鋰電池定制

鉅大核心技術(shù)能力